
Journal of Geodesy (2018) 92:1457–1465
https://doi.org/10.1007/s00190-018-1202-7

ORIG INAL ART ICLE

AUSGeoid2020 combined gravimetric–geometric model:
location-specific uncertainties and baseline-length-dependent error
decorrelation

N. J. Brown1,6 · J. C. McCubbine1,6 ·W. E. Featherstone2,6 · N. Gowans5,6 · A. Woods3,6 · I. Baran4,6

Received: 3 April 2018 / Accepted: 12 September 2018 / Published online: 27 September 2018
© The Author(s) 2018

Abstract
AUSGeoid2020 is a combined gravimetric–geometric model (sometimes called a “hybrid quasigeoid model”) that provides
the separation between the Geocentric Datum of Australia 2020 (GDA2020) ellipsoid and Australia’s national vertical datum,
the Australian Height Datum (AHD). This model is also provided with a location-specific uncertainty propagated from a
combination of the levelling, GPS ellipsoidal height and gravimetric quasigeoid data errors via least squares prediction.
We present a method for computing the relative uncertainty (i.e. uncertainty of the height between any two points) between
AUSGeoid2020-derived AHD heights based on the principle of correlated errors cancelling when used over baselines. Results
demonstrate AUSGeoid2020 is more accurate than traditional third-order levelling in Australia at distances beyond 3 km,
which is 12 mm of allowable misclosure per square root km of levelling. As part of the above work, we identified an error
in the gravimetric quasigeoid in Port Phillip Bay (near Melbourne in SE Australia) coming from altimeter-derived gravity
anomalies. This error was patched using alternative altimetry data.

Keywords GPS/levelling · Quasigeoid · Height datum · Australian Height Datum

1 Introduction andmotivation

Fitting gravimetric geoid or quasigeoid models to GPS-
levelling data is a technique now used in many countries.
In Australia, this is necessary because of distortions in the
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Australian Height Datum (AHD) (e.g. Roelse et al. 1975;
Morgan 1992; Featherstone 2004, 2006; Featherstone and
Filmer 2008; Filmer and Featherstone 2009, 2012). This
paper describes the fitting of the Australian Gravimetric
Quasigeoid 2017 model (AGQG 2017; Featherstone et al.
2018a) to a nationwide GPS-levelling dataset (Featherstone
et al. 2018b) to provide a model of the separation between
the GDA2020 ellipsoid and the AHD, thus enabling a direct
transformation between ellipsoidal and AHD heights (cf.
Featherstone 2000). We term this a combined gravimet-
ric–geometric model, though others may term it a “hybrid
quasigeoid model”.

Combined gravimetric–geometric models are affected by
errors in one, more or all of the GPS ellipsoidal heights,
approximations in the computation of heights, errors in the
levelling data and systematic errors in the geoid (e.g. Kot-
sakis and Sideris 1999). We briefly describe the computation
of the geometric component and its accompanying grid of
uncertainty values using least squares prediction (LSP; cf.
Mysen 2014). We have developed a new AUSGeoid model,
AUSGeoid2020, a combined gravimetric–geometric model
accompanied by a 1′ by 1′ grid of uncertainty values prop-
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Fig. 1 AUSGeoid2020 values (dots at centre of circles) are computed using data within a given radius (circles). The closer the dots are, the greater
the amount of common data in the overlapping circles and the therefore the greater the correlated errors

agated from all the input data into the LSP-gridded surface,
providing users with location-specific uncertainty estimates.

There has been a change to the Australian geodetic
datum, fromGDA94 to GDA2020. GDA2020 is based on the
International Terrestrial Reference Frame 2014 (ITRF2014;
Altamimi et al. 2016) extrapolated to epoch 2020.0 using
Australian GPS station velocities (ICSM 2018), under the
assumption that the motion is linear. This datum change
causes horizontal geodetic coordinates to move ~1.8 m in
a north-easterly direction, primarily due to plate tectonic
motion between 1994 and 2020, and ellipsoidal heights to
decrease by ~0.090 m, due to improvement and refinement
of the International Terrestrial Reference System between
ITRF92 and ITRF2014. These changes have made it neces-
sary to recompute AUSGeoid because its predecessor was
fitted to AHD and GDA94 using LSP (Brown et al. 2011).

The location-specific uncertainty grid allows for the esti-
mation of uncertainty from GPS-derived AHD heights when
used in an absolute sense (i.e. using PPP or AUSPOS), but
when GPS baselines are used to determine AHD height dif-
ferences, correlated errors cancel (Kearsley 1986). This is
because nearby AUSGeoid2020 model values are derived
from similar gravity/GPS-levelling data. By subtracting them
fromone another to obtain height differences, common errors
cancel. The closer two points are (horizontally), the more
common data they are based on, and the more errors cancel
(Fig. 1). We have therefore devised a decorrelation function
(Sect. 4) that can be used to compute the relative uncertainty
betweenGPS-AUSGeoid2020-derivedAHDheights, similar
to allowable misclosures used in differential levelling.

2 Fitting AGQG2017 to the AHD

Least squares prediction (LSP: Moritz 1980) was used to
model the geometric component of AUSGeoid2020 from
7624 co-located GPS-levelling points across Australia; data
were described and mapped in Featherstone et al. (2018b).
After performing an initial cross-validation test (Sect. 3.1),
40 points were found to misfit AUSGeoid2020 by more than
five standard deviations from themean, so were removed and
the geometric component recomputed.

Fig. 2 Gaussian analyticalmodel fitted to the empirical covariance func-
tion computed for 5′ bins

AGaussian empirical covariance function for the geomet-
ric component was computed using GEOCOL’s (Tscherning
et al. 1992) empcov.f, with the covariance determined from
GPS-levelling data aggregated over 5′ bin sizes (Fig. 2).
The values determined by least squares for the Gaussian
analytical covariance function are: variance 0.0092 m2, cor-
relation length 75 km and constant 0.78. Beforehand, a tilted
plane was removed from the GPS-levelling data using the
remove linear function in x and y command in GEOCOL’s
geogrid.f to remove the dominant north–south tilt in the
AHD (cf. Featherstone and Filmer 2012). This tilt was added
back after LSP to deliver the whole geometric component
(cf. Fig. 3).

AUSGeoid2020 (Fig. 4a) is the sum of the geometric
(Fig. 3) and AGQG2017 1′ ×1′ grids (Fig. 12a in Feath-
erstone et al. 2018a). The accompanying 1′ ×1′ uncertainty
grid (Fig. 4b) was computed by SLOPOV-propagating that
of the geometric component and AGQG2017 (Fig. 12a in
Featherstone et al. 2018a), assuming independence. The
uncertainty in AUSGeoid2020 is dominated by the uncer-
tainty in the AHD heights, which results in a larger error
estimate in AUSGeoid2020 than AGQG2017. We acknowl-
edge there are neglected correlations amongst the data, e.g.,
because AHD heights have been used in the reduction of
gravity observations inAGQG2017, and there is a covariance
between the GPS-levelling error values because the levelling
data are interconnected. This will be discussed further in
Sect. 3.1.
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Fig. 3 Geometric component of AUSGeoid2020. Units in metres

The public-domain AUSGeoid2020 model (http://www.g
a.gov.au/scientific-topics/positioning-navigation/geodesy/a
hdgm/ausgeoid2020) has been trimmed (values set to NaN)
to a distance of ~50 km beyond the Australian coastline and
its territorial islands. It was not trimmed exactly to the coast-
lines because this would prevent values being bi-cubically
interpolated from the grid in near-coastal regions. This is
administrative rather than scientific, but done deliberately
so as to remind users that AUSGeoid2020 it is a model
of the AHD (an onshore-only vertical datum) rather than
the classical geoid or quasigeoid. For offshore users, the
public-domain AGQG2017 is also available at the above
website.

As described in “Appendix B”, post-publication inspec-
tion of AGQG2017 around the coastline revealed a spurious

feature in Port Phillip Bay (near Melbourne in SE Australia),
which introduced an unexplained localised bias between
AGQG2017 and GPS-AHD data on land (Fig. 7a). We
have patched this region using alternative altimetry data
(“Appendix B”).

In regions where no GPS-levelling data are within 75 km
of each other, the uncertainty of the geometric component
(Fig. 3) is at its largest, 96mm,which is the standarddeviation
(one sigma) of the GPS-levelling data. Given the highly cor-
related nature of the GPS-levelling data at short wavelengths
beyond approximately 25 km (Fig. 2), AUSGeoid2020 thus
transitions to AGQG2017 with a trend (cf. Fig. 3).

3 Testing AUSGeoid2020

3.1 Cross-validation

Cross-validation (aka “leave-one out”) inLSPwas performed
usingGEOCOL’s geogrid.f program (Tscherning et al. 1992)
as per our previous studies (Featherstone and Sproule 2006;
Brown et al. 2011). The method is to remove one point from
each LSP run and then use LSP to predict the GPS-levelling
value at that removed point. The LSP value is then subtracted
from actual GPS-levelling value to produce a residual. This
process was repeated for all 7624 GPS-levelling points (after
removal of the 40 outliersmentioned earlier), and the set of all
residuals was used to assess the uncertainty of the combined
model by looking at their distribution.

However, this cross-validation in LSP is not fully indepen-
dent because the geometric component computed with each
point removed is still based on AHD heights from connected
levelling loops and ellipsoidal heights which may have been

Fig. 4 a The AUSGeoid2020 combined gravimetric–geometric model and b its associated location-specific error model. Units in metres
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processed together with nearby points and also have cor-
related error. This can make the result of “leave-one out”
cross-validation optimistic. The descriptive statics are max
228 mm, min 226 mm, mean −2 mm and standard deviation
(STD)±38 mm.

3.2 Pseudo-independent data

An additional 8409 GPS-AHD values were supplied by three
states (Western Australia, New South Wales and Victoria).
These data were not used in the determination of the geomet-
ric component (Sect. 2) because the GPS observation time
was less than a recommended 6 h (ICSM 2017). However,
the GPS heights still have an expected standard deviation of
less than ±20 mm (Jia et al. 2014), making them adequate
for testing of the AUSGeoid2020 model given the formally
propagated expected uncertainty in the model (Fig. 4b).

AUSGeoid2020 was bi-cubically interpolated to the loca-
tions of these pseudo-independent data to evaluate the
differences. The descriptive statics are: max 249 mm, min
287 mm, mean −7 mm and STD±27 mm. This lower STD,
which is less than the formally propagated error in AUS-
Geoid2020, should, however, be treated sceptically. This is
partly because these data are not fully independent in the
strictest sense. The AHD heights (determined by levelling)
are referenced to the Australian National Levelling Network
(ANLN; Roelse et al. 1975), which means the same localised
errors in theANLNare common toboth the data used to deter-
mine the geometric component and the pseudo-independent
data. Another potential cause is the use of single covariance
function to compute the geometric component across the con-
tinent. As a result, lower-quality data affect the variance of
the data set and therefore falsely increase the uncertainty
in regions with higher-quality data. Ideally, location-specific
covariance functions could be developed (cf. Knudsen 2005),
but this remains a topic of research for future models.

4 Decorrelation function to compute
the relative uncertainty

When computing AHD height differences with GPS/GNSS
baselines and AUSGeoid2020, correlated errors cancel
(cf. Kearsley 1986). This fundamental principle behind
relative GPS baseline processing is also applicable to
AUSGeoid2020 because it is determined using similar
gravity/GPS-AHD data (cf. Fig. 1). As such, the relative
uncertainty of AHD heights derived from AUSGeoid2020
over GPS/GNSS baselines should be better than the absolute
uncertainty, particularly for points closer together (cf. Fig. 1).

To assess the relative uncertainty ofAUSGeoid2020 in this
scenario commonly used by GPS/GNSS surveyors, height
differences between the levelling data were compared to
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Fig. 5 Comparison of the uncertainty in computing the difference in
height from levelling and GPS using AUSGeoid2020

height differences derived using all the pseudo-independent
GPS data (Sect. 3.2), minus bi-cubically interpolated AUS-
Geoid2020 values. The height difference residuals (i.e.
difference between AHD and GPS-AUSGeoid2020) were
grouped by the horizontal distance (calculated using Vin-
centy’s (1975) formula for geodesics) between points in bins
of 1 km.

The STDof the height difference residuals increases as the
geodesic distance between the points increases (Fig. 5). This
demonstrates that relative heights determined using AUS-
Geoid2020 over shorter baselines are more accurate than
over longer baselines, confirming that more of the correlated
errors cancel. The approach used here was first presented in
Smith and Roman (2001), Fig. 9). Our results show improve-
ment, largely due to improvements in geoid modelling since
circa 2001.

From Fig. 5, over distances greater than approximately
3 km, the uncertainty of relative height differences computed
from GPS observations and AUSGeoid2020 is less than the
allowablemisclose of traditional third-order levelling inAus-
tralia, which is equivalent to 12 mm of misclose per square
root km.At distances less than ~3 kmorwhen comparedwith
more accurate levelling techniques over longer distances (e.g.
allowable misclose of 2 mm or 4 mm per square root km of
levelling), height transfer by levelling is superior.

The variance associated with relative AHD heights, deter-
mined by taking the difference pairs of AUSGeoid2020 and
GPS ellipsoidal height observations (h1 − ζ1) − (h2 − ζ2),
is given by

σ 2(h1 − ζ1 − h2 + ζ2) � σ 2(h1) + σ 2(ζ1) + σ 2(h2) + σ 2(ζ2)

− 2cov(ζ1, ζ2) − 2cov(h1, h2)

− 2cov(h1, ζ1) + 2cov(h1, ζ2)

+ 2cov(h2, ζ1) − 2cov(h2, ζ2) (1)
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Fig. 6 Variance of the
1-km-binned height difference
residuals (blue circles) and a
fitted exponential semi-variance
function (red line)

The cross-covariance terms in Eq. (1) (i.e. terms involving
a GPS h and AUSGeoid2020 ζ values) are zero since they
are independent; this leads to a simplified expression

σ 2(h1 − ζ1 − h2 + ζ2)

� σ 2(h1) + σ 2(ζ1) + σ 2(h2) + σ 2(ζ2)

− 2cov(ζ1, ζ2) − 2cov(h1, h2) (2)

We have estimated the shape of the covariance term
2cov(ζ1, ζ2) by considering the variances of the 1-km-binned
relative height difference residuals. The empirical binned
variance values can be modelled with a semi-variance expo-
nential function (Eq. 9; Fig. 6) of the form

S � σ 2 ×
(
1 − ρe− 3l

α

)
(3)

In Eq. (3), α is the distance parameter that represents the
point atwhich the correlation in the errors is no longer statisti-
cally significant andσ 2 is the far-field variance, often referred
to as the “sill”. The value ρ < 1 prevents the function from
being too small for very small values of L . We fitted these
parameters to the binned relative height difference residual
variances by least squares. The fitted values are α � 63.151
km and ρ � 0.68. We thus propose that the covariance term,
2cov(ζ1, ζ2), can be approximated using this fitted function
such that

2cov(ζ1, ζ2) �
(
σ 2(ζ1) + σ 2(ζ2)

)
ρe− 3l

a . (4)

Therefore, the standard deviation of the uncertainty asso-
ciatedwithAHDheight differences determinedusing relative
GPS and AUSGeoid2020 can be approximated by

σ(h1 − ζ1 − h2 + ζ2) �
√

σ 2(h1) + σ 2(h2) − 2cov(h1, h2) +
(
σ 2(ζ1) + σ 2(ζ2)

)
(1 − ρe− 3l

a ) (5)

In Eq. (5), σ 2(ζ1) and σ 2(ζ2) can be determined by inter-
polating and squaring values from the AUSGeoid2020 error
grid (http://www.ga.gov.au/scientific-topics/positioning-nav
igation/geodesy/ahdgm/ausgeoid2020) and σ 2(h1), σ 2(h2)
and cov(h1, h2) should be extracted from GPS processing
software. “Appendix A” provides a worked example of the
application of Eq. (5) to the outputs of some GPS processing
software.

5 Conclusion

AUSGeoid2020 provides the method to convert between
GPS-derived ellipsoidal heights and AHD heights (and
vice versa) and to compute AHD height differences. AUS-
Geoid2020 is also accompanied by a location-specific com-
bined uncertainty of the GPS, AHD and quasigeoid compo-
nents used in its construction. Pseudo-independent testing of
AUSGeoid2020 has shown that it is capable of assisting users
of GPS to convert from ellipsoidal heights to AHD heights
with an absolute uncertainty of ±27 mm. We also pre-
sented a method to compute the relative uncertainty between
AUSGeoid2020-derived heights based on the principle of
correlated errors cancelling between two points. Our analysis
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implies AUSGeoid2020 is equivalent to, or better than, tradi-
tional third-order levelling in Australia at distances beyond
~3 km.

Acknowledgements The current work has been supported financially
by the Cooperative Research Centre for Spatial Information, whose
activities are funded by the Business Cooperative Research Centres
Programme, and by Geoscience Australia. Previous works (e.g. soft-
ware and algorithm development) have been supported financially by
the Australian Research Council over the past two decades through
Grant numbers A39938040, A00001127, DP0211827 and DP0663020.
The authors would like to acknowledge Intergovernmental Committee
on Surveying and Mapping members for supplying GPS-levelling data
for the combined model. We thank Scripps Institution of Oceanography
(University of California), the US National Oceanographic and Atmo-
spheric Administration and the US National Geospatial-Intelligence
Agency for permission to use the marine gravity anomalies from
Sandwell et al. (2014) in “Appendix B”. All maps and charts in this
paper were produced using GMT (Wessel et al. 2013). Nicholas Brown
and Jack McCubbine publish this paper with the permission of the
Chief Executive Officer of Geoscience Australia. Thanks are extended
to Dr Dru Smith, two anonymous reviewers and the editors of this
manuscript.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A: Relative uncertainty—a worked
example

To demonstrate the application of Eq. (5), belowwe compute
the relative uncertainty of two GPS points extracted from the
Geoscience Australia geodetic data archive. These points are
located approximately 20 km south-west of Orallo (Queens-
land) where the GNSS-levelling data used to compute

the geometric component of AUSGeoid2020 are somewhat
sparse. The points are separated horizontally by ~7.5 km
(Table 1). The positions, standard deviations and covariance
value of cov(h1, h2) � 4.352 × 10−6 m were determined
from GPS analysis using Bernese 5.2 (Dach et al. 2015).

The AHD height at each point is given by

H1 � h1 − ζ1 � 301.832 m (6)

H2 � h2 − ζ2 � 313.626 m (7)

where ζ1 � 38.754 m and ζ2 � 38.868 m have been bi-
cubically interpolated from AUSGeoid2020. The derived
AHD height difference, �H1,2, between these two points
is given by

�H1,2 � h1 − ζ1 − h2 + ζ2 � −11.794 m (8)

The variance estimates of the AUSGeoid2020 values
are given by σ 2(ζ1) � 0.12 � 0.01m2 and σ 2(ζ2) �
0.0992 � 0.01m2 which have been interpolated from the
AUSGeoid2020 error model and then squared. The uncer-
tainties of the two derived AHD heights are given by

σ (H1) �
√

σ 2(h1) + σ 2(ζ1) � 0.1 (9)

σ (H2) �
√

σ 2(h2) + σ 2(ζ2) � 0.1 (10)

The uncertainty of the relative height can then be approx-
imated by utilising Eq. (5).

σ
(
�H1,2

) �
√

σ 2(h1) + σ 2(h2) − 2cov(h1, h2) +
(
σ 2(ζ1) + σ 2(ζ2)

)(
1 − ρe− 3l

a

)

�
√
(5.2900 × 10−6) + (5.2900 × 10−6) − 2 × (4.352 × 10−6) + (0.01 + 0.01)

(
1 − 0.68e− 3×7500

63151

)

� 0.102 m (11)

The relative uncertainty in the AHD height difference of
two points is smaller than the square root of the sum of
squares of the error estimates of point 1 and point 2 (10.2mm
vs. 14.1 mm). This is because the correlated errors are
accounted for using the [semi-variance exponential] covari-
ance function fitted to the data (Fig. 6). This result (Eq. 11)
and the values in Fig. 5 are not directly comparable. The
relative uncertainty value given by Eq. (11) is dominated by
the two absolute uncertainty values extracted from the AUS-
Geoid2020 error grid. The error grid is dominated by errors

Table 1 Positions and variance
of computed ellipsoidal heights
from GPS data

Site Latitude Longitude Height (m) SD (m) Variance (m)

1 −26.325393 148.463862 340.586 0.0023 5.2900×10−6

2 −26.292780 148.485857 352.494 0.0023 5.2900×10−6
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in the AHD. However, the data used to produce Fig. 5 are
corrected for correlated AHD errors since they are residual
height differences. This results in a smaller σ value in Eq. (3)
for the residuals, but retains the general shape of the spatial
dependence of the covariance for the function fitting.

Appendix B: Patch correction to AGQG2017

Post-publication inspection of AGQG2017 around the coast-
line revealed a spurious feature in Port Phillip Bay (near
Melbourne in SE Australia), which introduced a localised
bias between AGQG2017 and GPS-AHD data on land
(Fig. 7a). Upon inspection of the data used to compute
AGQG2017, the feature is attributable to a large positive

Fig. 7 a TheAGQG2017model (units inmetres) before being corrected
with the DTU15 model over the Port Phillip Bay region. b The gravity
anomaly (mGal) in the Sandwell et al. (2014) model, c the quasigeoid

(units in metres) after the patch has been applied, d the gravity anomaly
with DTU15 data offshore (units in mGal)
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Fig. 8 The patch to the AGQG2017 model has reduced the residuals between GPS-levelling and AUSGeoid2020 in the region close to the patch. a
Before patch was applied, b after patch was applied

gravity anomaly in the Sandwell et al. (2014) satellite-
altimetry-derived gravity anomaly grid (Fig. 7b). The same
gravity anomaly was not evident in the DNSC08, DTU10
and DTU15 (Andersen and Knudsen 2009, 2016; Andersen
et al. 2010 satellite altimetry gravity anomaly grids.

We believe this is not a true gravity anomaly, but an error
in the Sandwell model, likely due to the known problems
computing gravity anomalies from satellite altimetry data in
coastal regions. We computed a new quasigeoid model using
DTU15 gravity data, in place of the Sandwell et al. (2014)
model, over a 5°×5°patch centredover the region containing
the anomalous feature in AGQG2017. This quasigeoid com-
putation used the same integration parameters asAGQG2017
(i.e. modification degree of 40 and integration cap radius of
0.5°) and EGM2008. We then blended this 5°×5° degree
patch with the AGQG2017 model by linearly combining the
two grids using cosine tapered weights to ensure there were
no discontinuities. DTU15 does not have an accompanying
error grid, so theAGQG2017 errormodel was left unchanged
in this region. Figure 7c shows the patched quasigeoid, and
Fig. 7d shows the gravity anomaly data whereDTU15 is used
offshore.

As shown in Fig. 8, the patch resolved the localised bias
between AUSGeoid2020 and GPS-AHD data. The residuals
beyond the limits of the patch have not changed, while the
residuals near the patched region have reduced. At the point
closest to the patch at approximately −38°00′, 144°30′, the
residual has been reduced from 50 to 0 mm.
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Correction to:
Journal of Geodesy
https://doi.org/10.1007/s00190-018-1202-7

In Appendix A of the original article, the units used to com-
pare the relative uncertainty from Eq. (11) to the square root
of the sum of squares of the error estimates of point 1 and
point 2 were incorrectly written as mm. This is incorrect. The

The original article can be found online at https://doi.org/10.1007/s00
190-018-1202-7.
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units should have been written in cm. Therefore, the correct
information reads as follows:

The relative uncertainty in the AHD height difference of two
points is smaller than the square root of the sum of squares
of the error estimates of point 1 and point 2 (10.2 cm vs.
14.1 cm).

All other results are unaffected by this error in units.
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