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ERRATA

As at 1st May 1993, the following errors have been identified in the
'Manual of the NEW SOUTH WALES INTEGRATED SURVEY GRID’
(publ. 1976).

Page 15, last line of text should read :
'are given in Table I below and Annexure K - Zone Diagram.’

Page 24, part 5.8
In formula (5.8), ‘0.6" should be "0.06’ and add '}’ at the end.
Formula (5.8) should read:

K = 0.99994 { 1 + 0.3081 [(£.1077) + (E;.1077) - 0.06 |’ }
Page 32, part 7.5

1/sin 1" is missing from the formula for E;.
The second line of the formula should read:

+ 72L’r’2 + 24¢14 i .1
P sin 1"

Page 35, lines 11 to 17 should be replaced by the following lines :

Assuming that
E — E, = AE and AE.10° (y)
N — N, = AN and AN.10™° = (x)
where E; and N, are |.S.G. co-ordinates for the adopted point on the zone
boundary with latitude @,. New co-efficients K; to K¢ are calculated as follows:
k(y) — ky(x) + k = K ki(x) + ki(y) + ki = K
K(y) — Ko(x) + kg = K Ki(x) + K(y) + ks = Kg

Page 50, part 10.7

The last three lines should read :
2A 2 624 375.50 = 2 624 375.5
A 1 312 187.75m?

131.2188 Ha
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10.

13,

12

13.

Page 53, in the table beneath Figure 5 ;
The value in line 8 column x should be + 70.6. The line should read :

B |2301515.1 115504 | +.42156 | 15110 | +26°.0 | +70°.6 | 230 16 25.7

Page 62, Miscellaneous calculation (3)
The last line of the Scale Factor calculation should read :

= (1-0.000 060 000) (1 + 0.000187426) = 1+.000127415

Page 91, sixth line from bottom of page
Replace the word ‘taping’ with ‘distance measurement’.

Page 92, fifth line from bottom of page should read :
'« much the same way as he ...’

Page 93, figure 12

At the top of the diagram, after ‘Number of errors’ on the ordinate,
delete - v'.

At the bottom of the diagram, change ‘Size of errors -v’ on the abscissa
to read ‘Size of errors (v)'. '

Page 122, fourth line from bottom of page should read :

‘feature of most small calculators will automatically take

this into acecount.’

Page 145 & 146 - Initem ‘Transverse Mercator Projection (TM)’
On page 145, in line 2 of this definition delete ' (See Fig 20A)".

On page 146, in line 1, insert ' (See Fig 20A)’ after ‘central meridian’.

Page 154, Annexure A
In the last column {(Metres), the third last figure, 1943 should be 1948.

---------------------------
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PREFACE

The introduction of the Integrated Survey Grid (1.S.G.), as the first comprehensive
system of survey in this State, has not been without difficulty. The initial represen-
tations for the introduction of a co-ordinated statewide system commenced in the
last century. Spasmodic attempts have been made throughout the years to introduce
a proper system of survey. The Survey Co-ordination Act, 1949 was the first positive
step towards the establishment of control surveys and connection to the Trigono-
metrical Survey. It is unfortunate that so little progress was made in implementing
the provisions of this Act.

The first positive move towards the establishment of a modern and compre-
hensive system followed a request by the Institution of Surveyors, Australia, New
South Wales Division at the instigation of the President, Mr I. C. Booth. With
ministerial approval, a committee of investigation was established in 1968 to investi-
gate and report on the introduction of an Integrated Survey System. The committee
comprised the Registrar General and representatives of his Department, the chief
or principal surveyors of twelve government departments and instrumentalities in-
volved in surveying and representatives of the N.S.W. Division of the Institution and
Universities of Sydney and New South Wales under the chairmanship of the Sur-
veyor General. The committee was also assisted by numerous technical experts.

The committee undertook a detailed study, including investigation of overseas
practices, particularly where similar changes had been introduced in recent years,
Quite a number of the committee members had the benefit of experience in various
survey systems in other countries. The committee reported to the Minister for Lands
in July, 1969, and, in January, 1970, the Government approved the introduction of
an Integrated Survey System and authorized the Surveyor General to commence the
marking and control surveys and prepare draft legislation,

In November, 1971, the profession undertook the “Sydney Pilot Survey™ in
which a survey to establish some sixty-six control points, located in the commercial
heart of Sydney, was undertaken by eighteen separate survey parties. This one-day
exercise was designed to demonstrate the machinery and potential of integration.
As the report indicated, it was successful in every way.

A recommendation for draft legislation was furnished to the Minister for Lands
in April, 1972, and a copy of the draft provided to the Institution of Surveyors. Due
to various representations, the Minister of Lands arranged for Sir John Overall to
conduct a public inquiry to determine whether a more sophisticated system of survey
was necessary and for report generally on the merits of the recommendations of the
Investigation Committee.

Sir John Overall, in a report of August, 1974, recommended that the Integrated
Survey System be introduced ““forthwith™ and that basic control be established in the
urban and developing areas of the State in the first 5 years and in the other areas in
the following 5 years.

A revised draft Bill has since been prepared on the lines recommended by Sir
John Overall and it is hoped that it will be introduced in Parliament at an early date.

The Investigating Committee considered that the advantages to the State in
establishing an Integrated System of survey can be summarized as:

(1) The establishment of one correlated system for all surveys.

(2) The system will provide a more positive basis for land titles and allow
easier and less costly redefinition of these boundaries in the future.

(3) Abundant basic control for all mapping, surveys and compilation of
cadastral maps and plans would be available.
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PART 1. DEFINITION AND APPLICATIONS OF
THE INTEGRATED SURVEY GRID.



1. INTRODUCTION

1.1 Integration

The reasons for introducing an Integrated Survey system in New South Wales
have been set out briefly in the preface. In establishing the system, one of the intentions
has been to enable survey methods to be transposed into the new system with a
minimum of change. There are three essential changes:

e surveys in Integrated Survey areas are based on control survey marks;

e projection corrections are applied to survey data to convert to projection
data, before computation; and

e there is a new set of criteria for acceptable accuracy of survey data.

The corrections required are the reduction to sea level, the projection correc-
tions: scale correction, the arc-to-chord correction and the grid convergence. In many
surveys, perhaps the majority of cases, the corrections are negligibly small. Formulae
for calculation of the corrections, with examples, are given in paragraphs 4.6 (sea
level), 5.8 (scale correction), 5.5 (arc-to-chord) and 5.6 (grid convergence).

Most users of the Integrated Survey system will wish to have more detailed in-
formation on the system and its applications. This will enable them to make use of
the positive advantages of working within a control survey system and applying co-
ordinates in all computations. The Manual aims to fill the needs of these users. The
requirement of surveys of high precision are specialized, and while the Manual pro-
vides full details on calculating the projection corrections to high precision, it does
not deal with the methods of precise surveying.

Methods of caiculation in the Manual are appropriate to programmable and
non-programmable calculators of the pocket or desk-top types. Because the subject
of electronic computing is specialized and subject to rapid changes, it is not covered
in the Manual.

1.2 Scope of the Manual
The aims of this Manual are—
» to describe the co-ordinate system to be used for survey integration;
e to define standard symbols, terms and formulae for use in survey practice;

¢ to indicate methods of calculating projection corrections, which are convenient
and appropriate for various orders of accuracy;

» to provide numerical examples for the standardisation and simplification of
computations;

» to give examples of surveys based on co-ordinated survey control marks in
an integrated system;

e to describe the accuracy standards introduced with survey integration and to
indicate how they can be applied;

» toindicate methods for the determination of azimuth by astronomical methods;

» to describe the Australian Height Datum and indicate the reasons why it
was chosen to supersede the State Standard Datum;

e to set out revised survey directions on determination of mean high water mark.
13



21 INTEGRATED SURVEY

A section at the end of the Manual contains a glossary, the bibliography and
annexures. The glossary is intended to provide simple descriptions of terms used in
the Manual and in discussions on survey integration. These descriptions are not
rigorous definitions.

Very few references are quoted in the Manual. However the bibliography pro-
vides a list of publications for further reading, including those referred to in the text.
The bibliography is arranged according to the parts of the Manual. The annexures
include tables and diagrams for easy determination of projection corrections, forms
and tables for computation of coordinate transformations, and maps showing the
levelling net and the integrated survey grid zones in New South Wales.

2. FIGURE OF THE EARTH AND GEODETIC DATUM

2.1 [Introduction

The Australian National Spheroid (ANS) and Australian Geodetic Datum have
previously been adopted for the computation of surveys in Australia. They are also
adopted for the computation of Integrated Surveys in New South Wales.

2.2 Australian Geodetic Datum.

The Australian Geodetic Datum was defined by the 1966 Adjustment of first
order triangulation of Australia, in which the fundamental station was the Johnstone
Geodetic Origin.

In 1972, the first order network between Newcastle, Sydney, Wollongong and
Canberra was extended towards the coast to include trigonometrical stations in the
proclaimed Integration Survey areas. This network was readjusted retaining the 1966
values for the western peripheral stations. It is intended to retain the co-ordinates
obtained in the 1966 adjustment and in the 1972 readjustment as noted above for
the adjustment of second and lower order triangulation and traverse networks.

Any values obtained by future readjustment of first order triangulation and
used in integrated surveys should be qualified by a statement of their source and
used with the approval of the Surveyor-General only. No such statements are re-
quired for the 1966-1972 values.

2.3 The Australian National Spheroid.
The defining parameters of the Australian National Spheroid are:

Major semi-axis, a = 6 378 160 metres
Flattening, = 1/298.25
Derived functions are:
Flattening, f = 0.00335 28918 69
Minor semi-axis, b = a(l — f) — 6 356 774.719 metres
et =2f — 2 = (a® — b?)/a® = 0.00669 45418 55
et = e -+ /(1 — ) = (@® — b*)/b* = 0.00673 96607 96
¢ =a/(l — e} = 6399 617.255 metres.

For the computation of radii of curvature in latitude ¢, where p is the radius of
curvature in the meridian and » is the radius of curvature in the prime vertical:

V=1 -+ ¢%2cos® ¢ = v/p
p=c/V3 v=c/V: R=(pW)t =c/V*
14



DEFINITION AND APPLICATIONS

The following values are useful:
sin 17 = 0.00000 48481 36811 1
7 = 3.14159 26536
| radian = 57.29577 9513 degrees
= 3 437.74677 08 minutes
= 206 264.80625 seconds
Conversion factors:
1 yard = 0.9144 metres exactly
1 foot = 0.3048 metres exactly

2.4  Integrated Survey Grid (I.5.G.)

2.4

A Transverse Mercator Projection is used as the basis for the computation

of co-ordinates on the Integrated Survey Grid.

Surveys are to be connected to the stations of the state survey control system.

The Transverse Mercator co-ordinates of these stations are calculated from latitudes
and longitudes on the Australian Geodetic Datum as defined in para 2.2.

The Integrated Survey Grid is defined as follows:
(1) The projection is the Transverse Mercator Projection.
(2) Zones are 2° wide with 1° overlaps.
(3) The true origin of each zone is the intersection of the Central Meridian
with the Equator.
(4) A central scale factor k, = 0.99994 is applied to co-ordinates on the pro-
jection,
(5) Easting, E is defined by adding 300 000 metres to the value of y measured
from the central meridian.
(6) Northing, N is defined by adding 5 000 000 metres to the value of x measured
from the equator. All values of x south of the equator are negative.
(7) The zones are numbered in relation to the 6° zones of the Australian Map
Grid (A.M.G.). Each 6° zone is subdivided into three 2° sections, each of
which is covered by one I.S.G. zone. The 1.8.G. zone identification consists
of two parts, the first part is the corresponding A.M.G. zone number, and
the second part, separated by a slash, indicates the number of the subdivision,
from 1 to 3, increasing eastwards. For example, the eastern sector of A.M.G.
zone 55 (144°-150° E.) is covered by L.S.G. zone 55/3 which extends from
148°-150° E. and has central meridian 149° E. Details of L.S.G. zones
are given in table I see annexure K.

TABLE I

Zones of the Integrated Survey Grid, New South Wales

1.S.G. Zone Extent Central Meridian
(excl. overlaps)
54/2 140-142° E. 141° E.
54/ 142-144 143
55/1 144-146 145
55/2 146-148 147
55/3 148-150 149
56/1 150-152 151
56/2 152-154 153

15



24 INTEGRATED SURVEY

(8) Co-ordinates are normally quoted in metres.

(9) Notation of Co-ordinates. In quoting or recording L.S.G. co-ordinates, the
Easting is always placed before the Northing,

The following procedure is recommended for the listing of co-ordinates. At the head
of any listing of co-ordinates the figures common to all co-ordinates are noted as
constants. These constants, one for the Eastings and one for the Northings, are
subtracted from all co-ordinates in the co-ordinate list and in the computations, in
order to avoid carrying redundant digits.

A vertical dotted line or a gap may be placed between the third and fourth
figures from the decimal point to assist in the alignment of figures, as indicated in
the example below. The decimal points are preprinted on forms designed for the
listing of co-ordinates.

E metres N

Constant 200 000 1 100 000
A5 101 155.16 115.15
B27 125 311.00 13 351.85
B39 100 101,11 2 295.69
Cl1 98 115.35 20 015.70

Truncation of co-ordinates. The number of decimal places quoted should be
sufficient to allow calculation of bearings and distances from co-ordinates to an
accuracy consistent with-the requirements of the survey or the regulations.

It is the practice of the Department of Lands to record to 0.001 metres, co-
ordinates for control points which have been adjusted by the method of least squares.

3. SYMBOLS

¢ = Geodetic latitude, negative south of the equator.

¢y, ¢ = Latitude at points 1 and 2 respectively.

b = (¢1 + $2)/2

44 =¢:— ¢

A¢” = A¢ expressed in seconds of arc.

A = Geodetic longitude measured from Greenwich, positive eastwards.

A =4 -1

Ay = Geodetic longitude of a central meridian.

w — Geodgtic !;)ngitude measured from a central meridian, positiveeastwards:;
W =4 — 4,

y = Co-ordinate perpendicular to the central meridian measured from the
central meridian, positive eastwards.

x = Co-ordinate parallel to the central meridian measured from the equator,
negative southwards.

E =y - 300 000 metres = Easting.

N = X - 5 000 000 metres = Northing.

ps ¥ = Radii of curvature of the spheroid in the meridian and prime vertical
respectively.

o = Azimuth, clockwise through 360° from true north.

16



DEFINITION AND APPLICATIONS 4.3

f = Grid bearing, clockwise through 360° from grid north.

7] = Plane bearing, clockwise through 360° from grid north.

¥ = Grid convergence, positive at points east of the central meridian and
negative at points west of the central meridian.

4 = Arc-to-chord correction, with sign defined by the equations:
0=B+0=0a+y+ad

Ao = Meridian convergence.

s = Spheroidal distance.

S = Grid distance = plane distance.

d = Ground distance.

m = Meridian distance, true distance from the equator, negative southwards.

a, b = Major and minor semi-axes of the spheroid.

e = (a* — b*)/a* = (eccentricity)?.

s = (a® — b*)/b* = (second eccentricity)®.

kq = Central scale factor = 0.99994 for 1.5.G.

k = Point scale factor.

K = Line scale factor.

t = tan ¢.

¢’ = Foot point latitude. The latitude for which m = x/k;

t', p', ¥ are functions of the latitude ¢'.

R? = pv.

rt = R = pyle*

Note that y, x, E, N, S, r, k and K include the central scale factor, k,; whereas
d. s, p, v, R and m are true distances, which must be specifically multiplied by &
when necessary.

4. SURVEY DATA ON SPHEROID.
Most of the quantities defined below are illustrated in figure 2.

4.1 zimuth

Azimuth «, is a horizontal angle reckoned clockwise from the north direction
of the spheroidal meridian at a point, from 0° to 360°.

It is observed astronomically (Astronomical Azimuth «,) or computed from
co-ordinates on the projection or spheroid (Geodetic Azimuth «, or «).

The Laplace correction to an astronomically observed Azimuth is not normally
applied except in first order surveys. In New South Wales the correction will seldom
exceed 5 arc seconds.

4.2 Geographic co-ordinates
Geographic (geodetic) co-ordinates, latitude, ¢, and lontidue, 4, are not directly
used in Integrated Surveys and are required only for special computations.

Latitude is negative south of the equator and longitude is measured positive
eastwards from Greenwich.

4.3  Meridian convergence

Meridian convergence, /a, is the change in azimuth of a line between two
points on the spheroid.

Reverse azimuth — Forward azimuth -} meridian convergence -4 180°.
17



4.4 INTEGRATED SURVEY

4.4  Mean radius of the earth

For surveys in the integrated system it is sufficient to adopt R,, = 6 370 100
metres, which corresponds to a latitude of 34° and 45° azimuth. Changes in latitude
and azimuth have negligible effect on the computation of projection corrections
within the State of New South Wales.

Curvature functions in metres

The following values of curvature functions are useful in computations:
rm = 099994 R, = 6 369 700

104/2r,,2 = 12323
1019/2r,2sin 1”7 = 25419
10" /6r, 2 = 0.41078

101%/6r,%sin 1 = 8.4729

4.5 Ground distance

Ground distance, d, is a horizontal measurement, at the mean elevation of
the line, to which the mean sea level and projection corrections have not been applied.
4.6 Spheroidal distance

Spheroidal distance, s, is a sea-level distance on the spheroid.
If d is a measured distance at an average elevation of / (see para. 4.5 and figure
1) then the required mean sea-level correction is

h
s—d=—d.— vea(401)

m

FIGURE 1—SEA-LEVEL CORRECTION

Distance d measured at elevation / above the spheroid,
is longer than the spheroidal distance s

18



DEFINITION AND APPLICATIONS 53

If an accuracy of 1 : 100 000 is required for the reduced length, the mean
height should be correct to 60 metres (200 ft). The propagation of the error is linear,
for example a change in height of 60 metres would cause a change of ¢/100 000 in
the reduced distance, s.

The quantity 10°/R,, — 0.15698 = 0.157 with an accuracy of better than 1
part per million (p.p.m.) in New South Wales latitudes, so that, for practical com-
putation: s — d = —0.157 (d.10-2) (h.10-?).

The evaluation of this formula is simpler than it appears at first sight, the
quantities in brackets being obtained by shifting the decimal point three places to
the left in each case.

Example. Calculation of spheroidal distance s.

d = 4000 m: h = 500 m.
s —d = 0.157(—4.0)(0.5) = —0.314 m.
5 = 4000 — 0.314 = 3 999.686 (spheroidal distance).

The Annexures provide the corrections in convenient form:
The factor s/d is tabulated in annexure A.
Corrections may be obtained from the table in annexure B.

Combined corrections for sea level and scale may be obtained from
the graph in annexure D.

5, SURVEY DATA ON INTEGRATED SURVEY GRID (I.S.G.)

5.1 Introduction
The quantities defined below are illustrated in figure 2.

The shortest line joining two points on the spheroid (the geodesic) projects
on the Integrated Survey Grid as an arc and the projected grid length, S, is equal to
the spheroidal length, s, approximately 70 km E or W from the central meridian. The
grid length is shorter than the spheroidal length for lines closer to the central meridian,
and longer than the spheroidal length for lines further from the central meridian.

Computations on the projection may be carried out using spheroidal bearings
and distances. However, survey data on the spheroid may be reduced to the plane
of the Integrated Survey Grid by the application of projection corrections, so that
all computations may be effected by the formulae of plane trigonometry. This method
has been adopted throughout the manual. This is far simpler and more convenient
and 1s the method normally adopted.

The practical application of projection corrections is discussed in section 6.

5.2 Grid North

Grid North at any point on the projected geodesic arc is represented by a
straight line parallel to the central meridian.

5.3 Grid bearing

Grid bearing, f, at a point on the projected geodesic arc is the angle measured
clockwise from Grid North to the tangent to the arc at that point, from 0° to 360°,
Grid bearing may be obtained by subtracting the arc-to-chord correction (see para.
5.5) from a plane bearing, or by adding grid convergence (see para. 5.6) to an azimuth.

p=60—96

ﬁ:o{—!—};
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FIGURE 2—INTEGRATED SURVEY GRID

P, P, = Line east of central meridian

P, P,, P, P, = Lines crossing central meridian (see para 5.5)
GN — Grid North

The following quantities are negative in the figure

01 O3 Oy Og Py By Xy Xy 1y My
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DEFINITION AND APPLICATIONS 5.5

5.4 Plane bearing

Plane bearing, 0, is the angle between Grid North and the straight line or
chord joining the ends of the projected geodesic arc defined in para. 5.1.

A plane bearing may be obtained in one of the three following ways:
1. directly from grid co-ordinates by formulae

E,—E, AE
tanf = —— = —

NZ S Nl .1N

or

N, — N, AN
cotfl =——— = —

E,—E, AE

(See para. 10.1 for details of computation.)

2. by adding the arc-to-chord correction to a grid bearing.
0=p+9
3. by adding to a plane bearing an angle which has been reduced to the plane.

5.5 Are-to-chord correction, 6

The arc-to-chord or (1 — T) correction is the angular quantity to be added
algebraically to a grid bearing to obtain a plane bearing. It is the angle between the
geodesic which projects as a curve, and the chord or straight line, between two points
on the projection.

Thus any observed spheroidal direction or bearing is reduced to the plane
of the projection by applying the angle d.

The sign of the correction may be determined either from the formulae given
below, or graphically by noting that the projected geodesic arc is always bowed
away from the central meridian, (lines P,P,, PyP, in figure 2).

If the line crosses a central meridian within one third of its length from one
end, the bow is determined by the longer part (line P3P ). In this case 9 is extremely
small.

The arc-to-chord correction at the station occupied is given by:

(Noec AT Nobs) (z.vocc = yobs)
67,2 sin 1

50.-..: —iphy

where the subscript oce refers to the occupied station and the subscript obs
refers to the observed station.

y = E — 300000 m
For practical computation, using false Easting E:
Booe—ots = 875 [REee % 1073 + (Egps X 107°) — 9.00] X
[Noce — Nops] X 1073 suma )
Move the decimal point of E and AN by five places and round off to two places.
Example. Calculation of arc-to-chord corrections.

Data: E; 422 145.515 Ny 1817938.975
E, 398 112.145 N, 1828011.324
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5.5 INTEGRATED SURVEY

When Point 1 is occupied and Point 2 is observed:
From (5.1) 6 = 87.5(2 % 4.22 + 3.98 — 9.00) (—0.10)
=8”5(—0.342) = —2"9
When Point 2 is occupied and Point | observed:
0=28".5(2 x 398 +4.22 — 9.00) (0.10)
= 8*.5(0.318) = -2".7
Generally the magnitudes of arc-to-chord corrections at both ends of a line
are approximately the same, the signs of the corrections being opposite. The difference
in magnitudes is—
Ad =875 (Egee — Epg) WNooe — Nags) X 10710
irrespective of the distance from the Central Meridian. If AN = 1E = 15 km, the
difference in magnitudes is 0.2 arc seconds.
If E,, is an approximate mean Easting for the line the absolute value of
d = 25"4(E,,.107% — 3.00) AN serilale
Example. Calculation of are-to-chord correction—simplified method
Data: As in Example, para. 5.5
E,, = 410000 m; N = 10 100 m and the absolute value 0 is, from (5.2):
0 = 2574 (4.10 — 3.00) x 0.10
=28

Alternatively the correction may conveniently be read off the graph in annexure
D. to the nearest half second.

Ln
N

5.6 Grid convergence, y

The grid convergence y at a point is the angle between grid north and the
tangent to the arc of the meridian at that point.

Grid bearing = azimuth -} grid convergence

B=uty

Thus any observed astronomical azimuth may be reduced to a grid bearing
by the application of y.

In the southern hemisphere grid convergence is positive for points east of the
central meridian, and negative west.

The grid convergence is most easily determined from geographic co-ordinates.
If the longitude of the central meridian is 4, and that of a point in latitude ¢ is 2
then, to the nearest arc second

y = —(A — A) sin ¢, ...(5.3)
Note that in this formula, ¢ is negative.
Using 1. 8. G. tables:
};” —— bl'p
where p = 0.0001 w, m = A — Ag in seconds of arc.

Alternatively, if 1.S.G. co-ordinates in metres are known, an accuracy
to the nearest arc second may be obtained by using tables for the conversion of
Grid to Geographic co-ordinates as follows:

Select the term a, closest to the given Northing, note the corresponding
Jatitude to the nearest minute and look up the term d, for that latitude, then
y" = dy (.10-9) o)
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DEFINITION AND APPLICATIONS 5.6

The same accuracy may be obtained by using the table in annexure C.
For high precision surveys, y may be obtained to an accuracy of 0”.01 by
interpolating latitude to 0.1 second and using the formulae given in the I.S.G.

tables.
Example. Calculation of grid convergence.
1. To nearest second.

Data: E, =422 145,515 N, = 1817 938.975
Calculation: y = E — 300000
y =122145
¢ = —28°45 from tables: d; = 17 729
— 0.12214 5 3 17729 = 2 165*.5 = 36" 067

-

C.M.

=
fac
=

Tangent Tangent

S. Pole

FIGURE 3—RELATIONSHIP BETWEEN AZIMUTH o,
GRID CONVERGENCE y AND PLANE BEARING §#

2. To 0.01 seconds.
Interpolating in a,: (1 818 619 — 1817 939)/30.785 = 22.1

0 = —28°45 22".1
From tables d; = 17 729.23 + 22.10 x 0.2036 = 17 733.73
d3 = 188.1

7 = d(y.107%) — dy(y.107%)°
= 17733.73 x 0.12214 55 — 188.1 (0.1221)°
= 2166.09 —0".34 = 2165".75 = 36’ 05".75
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5.6 INTEGRATED SURVEY

If the azimuth of the line from Point 1 to Point 2 in para. 5.5 is
292° 08’ 157.6, then the grid bearing of the line is

o+y=4p
292° 08’ 157.6 + 36" 05".8 = 292° 44’ 21".4
and applying the arc-to-chord correction & —= —2.9, the plane bearing 0 is

202° 44" 18".5.,

5.7 Point scale factor

The point scale factor k, at a point on the curve, is the ratio of an infinitesimal
distance on the grid to the corresponding distance on the spheroid.

k = dS/ds.
With an accuracy of better than | p.p.m :

k = ko(l + y2/2%)

k = 0.99994 [1 4+ 1.23 (y.10-7)%. ]

k = 0.99994 + 1.23 (».10-7) 5.{8.5)
Move decimal point in y by 7 places and round off to 4 places.

Example. Calculation of point scale factor.

Data:  E, = 422 145.515

Calculation 3.10-7 = 0.0122

From (5.5) & = 0.99994 -+ 1.23(0.0122)* = 1.00012 3

5.8 Line scale factor
The line scale factor K, is the ratio of plane distance, S, on the grid, to the
corresponding spheroidal distance, .
K= §/s and
S =K e (9,6)

For the computation of triangulation the following more accurate formula is

generally used:
TR U B i D
K=k0 I—!‘J—-'—_-'-'—l ‘}1-2 :l‘:-
6r,*

With an accuracy of 1 p.p.m. if £ = 31 km. or 2 p.p.m. if £ = 44 km, any-
where in the zone, the point scale factor for the midpoint of the line may be adopted
as line scale factor:

"mz AN =)
K =k(,l:l -+ 2 :] where y,, =" AL wo e (8ET)

o 2

For practical computation, using false Eastings:
K =0.99994{1 4 0.3081 [(£;.10"7) + (E;.10-7) — U.6]? sl B)
Move decimal point in E by 7 places and round off to 4 places.
Substitution y,, = ¥ in equation (5.5) may be used.
Example. Calculation of line scale factor.
Data: as in Example, para. 5.5
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DEFINITION AND APPLICATIONS 6.1

From (5.8) K = 0.99994 [1 -+ 0.3081 (0.0422 -+ 0.0398 — 0.06)*]
— 0.99994 [I -+ 0.3081(0.022)?]
= 0.99994 x 1.00014 9
K = 1.00008 9
Ym = (122 145 + 98 112)/2 = 110 128; y,,.10~7 = 0.011
Using equation (5.5)
K =0.99994 + 1.23 (0.011)* = 1.00008 9

Alternatively scale factors may be obtained from the table in annexure A
and scale corrections from annexure B,
to an accuracy of 1,/100 000.

5.9 Grid distance

The grid distance S is the length measured along the arc of the projected
geodesic whose spheroidal distance is s.

5.10 Plane distance

The plane distance S is the length of the straight line joining the ends of the
projected geodesic arc.

The difference between the length of the chord and the length of the projected
geodesic arc is negligible, and in this Manual symbol S is used to denote both plane
and grid distances.

Grid or plane distance may be computed as follows.

(a) from grid co-ordinates after the computation of grid bearing 0 as in para. 5.4
by the formulae:
% AE AN

= — = s OT
sinfl  cosf
S = A(AE) + (AN)

(See para. 10.1 for details of computation.)
(b) by application of line scale factor to spheroidal length

S=s.K ...(5.10)
Example. Calculation of plane distance from spheroidal distance
Data: as in Example, para. 5.5

§ = 26056.366 m
K = 1.00008 9 from Example, para. 5.8
From (5.10) S = 26056.366 x 1.00008 9 = 26 058.685 m

6. APPLICATION OF PROJECTION CORRECTIONS

6.1 Introduction

This section gives details of the practical application of the corrections which
must be applied to survey data before it can be used in calculations on the projection.
Because the zone width of 2° was selected for the Integrated Survey Grid these
corrections are always very small. The order of size is in fact smaller than the per-
missible accidental errors in normal property or engineering surveys. Paragraphs 6.2,
6.3 and 6.5 deal with the magnitude of each correction and indicate the most con-
venient method of determining and applying each, in the case of surveys of normal
accuracy. Paragraph 6.6 deals with the case of surveys of higher precision.
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6.1 INTEGRATED SURVEY

Besides the application of projection corrections, distances are required to be
reduced to sea level (equation (4.1)) and the example in para. 4.6 indicates how this
correction is applied. Alternatively this correction can conveniently be combined
with the projection scale correction using the graph of annexure D.

6.2 Arc-to-chord correction, 6

~ For normal property and engineering surveys the arc-to-chord correction is
negligible. The following table with Eastings as argument gives the length of line in
the north-south direction (1 N) which requires a correction of one second.

TabLE 11
North-South component of lines for arc-to-chord corrections of one second

Easting AN ford = + 17

West of C.M. East of C.M. metres
280 000 metres 320 000 20 000
260 000 340 000 10 000
240 000 360 000 6 500
220 000 380 000 5000
200 000 400 000 4 000
180 000 420 000 3000

For a line of any other bearing, ¢ is a function of the Easting of the point 1/3
of the distance along the line from the end at which the correction is required.

Determining the correction. The absolute value of 4 may be estimated from
the graph in annexure D and the correct sign either obtained from figure 2, or deduced
from the information that the projected line of sight is always bowed away from the
central meridian,

6.3 Scale correction

The maximum distortion of the spheroidal length is of the order of 1/16 670
within the zone and [/8 000 on the edge of the }° overlap. The correction is negligible
for many surveys,

Determining the correction. Distances may be corrected by multiplying by the
scale factor (k) determined from the critical table in annexure A, or by applying the
correction calculated from the table in annexure B, which gives the correction per
1 000 units. Alternatively the combined scale and sea-level corrections on a length of
1 000 units or the factor can be determined by interpolation on the appropriate
elevation graph of annexure D.

6.4 Combined correction for scale, sea-level and temperature

For measurements with a steel band or tape, the scale, sea-level and temperature
corrections (SST corrections) can be combined. This is achieved by calculating a new
“standard’ temperature for the band, such that the temperature correction applied
will automatically include the scale and sea-level corrections, This temperature is
called the SST reference temperature. 1t will be different for various Eastings and
elevations, but one value will be applicable over a considerable range. For example,
if corrections are required to be accurate to 1/50 000, one value of the reference
temperature covers an elevation range of 250 m (800 ft) and a range of Eastings of
16 km near the edge of the overlap or 70 km near the central meridian.
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DEFINITION AND APPLICATIONS 6.5

Example. Calculation of SST reference temperature for a steel band for com-
bining sea-level and projection scale corrections with the temperature
correction.

Data: Easting, 420 km. Elevation h, 470 m.

Steel band standard temp, 22° C.
Coefficient of expansion 0.000011/° C.

Calculation of corrections on a length of 100 m.
Scale factor, equation (5.7) K = ky (1 + »2/2r,2)

K = 1.000117
Correction on 100 m = +0.0117
Sea-level, equation (4.7) s —d= —0.157(d 10-%) (h.10-%)
Correction on 100 m = — 0.0074
Scale -+ Sea-level -+ 0.0043
From annexure D -+ 0.0045 (Check)
Calculation of temperature difference
Effect of 1° on 100 m = 0.0011

Temperature effect equivalent to 0.0043 is ({;—g—.—?ﬁ =39

Reference temperature
The correction is positive, that is, plane distance is greater than the
measured distance. Decrease reference temperature below standard
temperature. This results in an additional positive correction to
measurements, as required.
SST Reference Temperature 22° — 3.9° 18.1°

= 18 C (rounded off)

6.5 Grid convergence, y

Determinations of direction by astronomical (or gyroscopic) observations are
based on the meridian and are azimuths. Grid bearings, f, are obtained from such
azimuths, «, by the application of the grid convergence, .

Astronomical azimuths will normally be required in the following cases:

I. For isolated traverses connected to the [.S.G. system at one end only,
where a check is provided on grid bearing by astronomical observations at the
remote end. For example, when provisional co-ordinates are required from a survey
and connection is practicable by traverse to one established control point only.

2. For traverses (e.g., road surveys) with a large number of angles where it is
not possible to check grid bearings at specified distances along the traverse by other
means.

3. If the misclose in bearings transferred from one control point through a
traverse to another control point is too large, one method of isolating the error is by
means of observed astronomical azimuth.

4. If grid bearings are required for a survey not connected to the Integrated
Survey system. Before the extension of State survey control into an area it is often
desirable to orient surveys on grid north, as this facilitates the later incorporation
of such surveys into the I.S.G. system.

The astronomical determination of azimuth is covered in detail in part 5.
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6.5 INTEGRATED SURVEY

Determining the correction. Grid convergence required for the computation
of a grid bearing, may be computed from known [.8.G. co-ordinates by the methods
indicated in para. 5.6 (equations (5.3), (5.4)).

In cases 1, 2 and 3 the co-ordinate values required for the formulae in para. 5.6
may be obtained with sufficient accuracy from preliminary computations.

In 4 the values may be obtained graphically from available large scale maps.
e.g., parish maps, on which the positions of some survey control points are shown.

The accuracy requirements are indicated by the following:

An error of 1” in grid convergence is caused by:

(1) an error in the Easting of 40 m, in latitude 387, at any Easting;
(2) an error in the Easting of 60 m in latitude 28°, at any Easting;
(3) an error in the Northing of 1 400 m, on the zone boundary.

6.6 Control surveys and high precision surveys

A higher accuracy will be required for surveys carried out to establish control
for survey integration and for high precision engineering or similar surveys.

Projection corrections are always applied in triangulation or control traverse
surveys. If such surveys are carried out for the purpose of survey integration, the
computation should normally be effected by an adjustment using the method of least
squares, using procedures approved by the Surveyor General. If requested the Depart-
ment of Lands will assist in the computations or will undertake the adjustments.
Such adjustments are normally carried out from the data listed on standard forms by
the head office of the Department of Lands. This procedure applies to other com-
putations such as resection, intersection, radiation or combination of these techniques.

Projection corrections may be calculated to the precision required using the
formulae for § in para. 5.5; the method involving 1.S.G. Tables for the calculation
of y in para. 5.6: and the full formula for K in para. 5.8.

7. CONVERSION OF CO-ORDINATES — GEOGRAPHIC TO GRID AND
GRID TO GEOGRAPHIC

7.1  Introduction

Integrated Survey Grid co-ordinates may be computed from geographic
co-ordinates on the Australian National Spheroid and vice versa by the method of
conversion described below. 1.S.G. Tables are available for manual computation.

The general method for transformation between A.M.G. and I.S.G. co-
ordinates is to convert the given co-ordinates to geographicals as intermediate
values and thence to the required projection values, In transforming from A.M.G.
co-ordinates into L.S.G. values, the operation is achieved in two steps. First AM.G.
values are converted into geographical co-ordinates using the method given in the
Technical Manual of the Australian Map Grid. Then the geographical co-ordinates
are converted to I.S.G. co-ordinates in the appropriate zone, using the method
described in this section.

Paragraph 8.1 shows how the operation is simplified in the case of conversions
to the central 1.S.G. zone. The method of para. 8.3 could also be applied for the
CcONversion.

For the purposes of this section, the symbols ¢, ¢', x and m are used to desig-
nate the absolute values of these quantities, that is they will all be regarded as positive,
even though they are in the Southern Hemisphere.
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7.2  Meridian distance, m, required for the computation of term a, in the conversion
formulae has been evaluated from the following formulae based on Jordan Eggert:
Handbuch der Vermessungskunde, volume 111, 1, page 263, 1939 edition.

3 5 175
6

|
A=T—=2——et =——¢
- 64 256 16 384

3 2+le¢+15 e+35 4
=—|e*+- —e' +—e
8 128

eﬁ

m=a(A¢ — Bsin2¢ + Csin4¢ — Dsin6¢)
a,= 5000000 — 0.99994 m metres

7.3 Formulae for Conversion

Redfearn’s formulae, published in Empire Survey Review No. 69, 1948, have
been adopted for the computation of the tabulated functions in the 1.8.G. Tables.
The formulae have been arranged so as to give the accuracy specified below even
at the edges of the overlaps.

Terms of the 5th and higher order have been omitted with the exception of
term E;, which is represented in a critical table.

Accuracy: nearest 0.001 metre in co-ordinates, 0”.0001 in geographical position
and 0”.01 in meridian convergence.

7.4  Conversion of Co-ordinates: Geographic to Integrated Survey Grid

Terms a, — a,, b, and b, in the Integrated Survey Grid tables are computed
from the formulae:

ay = 5 000 000.000 — 0.99994 (6 367 471.84853 &
— 16 038.95495 sin 24 -+ 16.8335 sin 46
— 0.0220 sin 6¢)

a; = ko v cosg sin 17,10

k
fy = -2—0 » sing cosé sin? 17.10°

ko 4 ‘
ag = — vcos’p | — — 12 )sin® 17,102
6 p

2

ear. { v ] .
= sing cos®p ( 4 — <+ — — 12 ) sin* 17,10

PP
b, = sing.10*
sin ¢ S U
b, = —cos’p | 2 — — — ) sin% 1”.10*2
3 PP
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Example. Given: ¢ = 28°45°01".2592
A = 148°15"02".1012
Compute: E, N and y on Zone 55/2

The computation is carried out on a standard form (annexure E).

The zone number and central meridian are determined from the table on the
form. Adopting zone 55/2, the central meridian is 1477,

For interpolating in the 1.S.G. Tables, enter the seconds of ¢ on the calcu-
lator so that by the multiplication of this quantity with the tabular values for
diff. 17, all increments to the tabular values of the terms for the minutes of the latitude
may be calculated. For diff. 17 take the value tabulated opposite the given minutes,
without interpolation.

After terms a, — ay, b, and by have been entered on the form, compute

o =1 —Jlyand p = 0.0001 "
y =ap + agp’

N = a, — ayp* — ap’

y" = bip + byp*

The formulae will give correct signs if p is entered with the correct sign, i.e. p
positive east and negative west of the central meridian. Alternatively terms o and p

can be taken as positive in the formulae for the computation of absolute values of
y and y, and the signs of the answers determined from the following conventions:

East of central meridian, E = 300000 - y and y is positive
West of central meridian, E = 300 000 — p and y is negative

7.5 Conversion of Co-ordinates: Integrated Survey Grid to Geographic

Geographical (Geodetic) co-ordinates may be directly converted into the co-
ordinates of any grid system provided that the same geodetic datum is used for both
systems. Conversion formulae are available for all projections and tabulated functions
are provided for most of the commonly used systems.

Therefore one method of obtaining corresponding values on another grid
system for points on 1.5.G. is by means of geographic co-ordinates.

I.S.G. Tables may be used for the conversion of I.S.G. co-ordinates into
geographic co-ordinates. The terms ¢, — ¢, d,, d3 and E; in these tables are computed
by the following formulae:

| secq’ 10°
=t 7
Ko " s df
18 =2 N

¢y = TR
2f% p'v' sin 17

1 secd’ /@ 1018
s By

B 93 Np! sin 17
1 t’ ¥'2 v 10#
€ =————— —4— 49— (1 — 1'% + 122 | -
24k, plv? p2 P sin 1"
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TasLE 111
Transformation of Co-ordinates

Geographic to Integrated Survey Grid

7.5

Zone: 55/2 Station: Pl
Zone: 54/2 54/3 Sl 55/2 55/3 56/1 56/2
CM.: 141° 143° 145° 147° 149° 151° 153°
Latitude ¢ 28745 017.2592 p = 00001 w” -+ 0.45021 012
Longitude A 148° 157 027.1012 p* + 0.20268 915
Central Merid. A, 147° 2 + 0.091253
w=A—4 1° 15 027.1012 p + 0.0411
w” 4502.1012
a, Tabular value 1 818 618.981 a, Tabular value 271 297.039
Increment — 38.764 Increment - 0.904
ag for ¢ 1 818 580.217 a, for ¢ 271 296.135
a. Tabular value 3 163.187 a, Tabular value 57.526
Increment 0.025 Increment - 0.001
a, for ¢ 3163.212 a, for ¢ 57.525
a, for ¢ 2260 @ p 122 140.266
a 1818 380217 a p? el i
a; p? - 149 = 122 145,515
a p' £ 0:083 False Origin 300 000.000
NORTHING N 1 817 938.975 EASTING E 422 145.515
by, Tabular value 4 809.888
Increment 0.054 Formulae
b, for ¢ 4 809.942
5 PA 2.94 ¥ =agiptasp
b -+ 2165.485 E = 300000 + »
1P 0.268
by-r? : N = ay —a. p* — a; p'
= 2165.753 ‘b
= by p »*
GRID ¥ 1 3

CONVERGENCE y

& 0°36'05".753

Answers:

E 422 145.551

N 1817 938.975

y + 36’ 05".75
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b v'3 p'2
E;=secd' ———| —4— (1 —61"2) - (9 — 68t2)
120k "5 p'® p?

¢’

T Rdvl gt 24:*«]
P

Lyzd 108

: =k—u?sin i

ds — s _.-l._,_l:__z s +3'P_'+ 3’2] 101
3kg® v'3 4 p' |sin 17

Example. Given: E = 422 145,515 7
N — 1817 938.975 fZone 55/2

Compute: ¢, , y

The computation is carried out on a standard form (annexure F).

The central meridian is determined from the table on the form. For zone 55,2
the value is 147°

y = E — 300 000 g = 0.00000 1 p

To obtain foot point latitude, ¢’, interpolate the northing in the tabular values
of N (pages 35-43 of the tables).

Thus 1818 000 — 1 817 938.975 = 61 025
¢’ = 28°45'20”.1067 + 0.06102 5 x 32.48348 — 28°45'22".0890

The A4’ value of 32748348 is taken without interpolation as shown opposite
the tabulated value of N which is the closest to and greater than the given Northing.

Alternatively ¢’ may be obtained by an inverse interpolation in the tabular
values of the term a, as follows: select the term a, the value of which is closest to and
greater than the given Northing, note the degrees and minutes of the corresponding
latitude and diff. 17, without interpolation, on the line containing the term. Divide the
difference (@, — N) by diff. 1” to obtain the required increment in seconds.

Compute increments to tabular values of terms where required as explained
in para. 7.4 and note all terms on the form. Then using the formulae below compute:

¢ =¢" —cg* + cug’
w =cq—csg®+ E;
7 =dg — dyg®

E; is obtained from a critical table. The maximum value of £; is --0”,0002 at
the edge of zone overlaps. It may be omitted within the zone boundaries.

The formulae will give correct signs if ¢ is entered with its appropriate sign,
positive east and negative west of the central meridian. Alternatively compute the
absolute values of @ and y taking the sign of ¢ and all tabulated terms in the formulae
as positive, and follow the sign conventions:

If y is negative (E < 300 000), 2 = 4, — w and y is negative
If y is positive (E > 300 000), A = 2, + @ and y is positive

1.6 Calculation of foot point latitude from meridian arc

The foot point latitude, ¢’, is required for the conversion of co-ordinates from
grid to geographic. It may be obtained by an inverse interpolation between the tabular
values of @, in the I.S.G. Tables (see para. 7.5). However, direct interpolation
may be more convenient especially for the preparation of computer programmes
since it avoids reiteration.
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TABLE IV
Transformation of Co-ordinates
Integrated Survey Grid to Geographic

Zone: 55/2 Station: P1
Zone: 54/2 54/3 55/1 55/2 55/3 56/1 56/2
C.M.: I141° 143° 145° 147° 149° 151° 153°
EASTING E: 422 145.515 NORTHING N: 1 817 938.975
False Origin 300 000.000 g = 0.00000 1y 4+ 0.12214 5515
yi=k 122 145.515 g* +  0.01491 9527
q* + 0.00182 235
¢; Tabular value 36 859.967 qt +  0.00022 26
Increment -+ 2155
¢ 36 862.122
¢;  Tabular value +4 242352 Interp. N ¢ 287457 22".0890
Increment s 0.060
¢; Tabular value 1 396.040
Cy 242412 Increment + 0.353
¢ q -+ 4 502”5429 €a 1 396.393
¢ g° — 0”.4418
5 } 07.0001 c; 16.8
¢’ 28° 457 227.0890
L ow + 1°157027.1012 e ¢ = 20”.8335
Central Merid. A, 1477 cy gt -4 0".0037
LONGITUDE A 148° 157 02".1012 LATITUDE b 28745’ 017.2592
d, Tabular value 17 729.23
Increment 4.497
Formulae:
dy 17 733,727
$=¢—-—a¢dtadqg
dy 188.1
w=2¢q9—cq +E
d q 2 166”.095
ds g = 0”343 y =d, g —ds ¢*
y" + 21657752 A =Nh+tw
GRID CONVERG. y + 0236057752
Answers: ¢ 28°45' 017.2592
A 148° 15 02”.1012
Vv -+ 36' 05".76
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7.6 INTEGRATED SURVEY

The following formulae, where all angular quantities are in radians, may be
used for the computation of ¢’ from the corresponding meridian arc x.

"= S sWM=~1)= ; exactly ) _ .
2—f o 505.50 (on the Australian National Spheroid)

a 1
G= L e . RN
l+n( +4H+ o )
X
£ = —
G
ey 3 93),2+212,4+1513_6
=g —{ N —— Sin 2 —Nn= 51N 4& —p* SIN 0&
2 16 16 96 K

On the Integrated Survey Grid:
x = 5000000 — N
n = 0.00167 92611 25105

X
& = —————(including factor £, = 0.99994)
6 367 089.8002

¢ =& -+ 0.00251 88876 92 sin 2 ¢ + 0.00000 37011 423 sin 4 ¢
-+ 0.00000 00074 4836 sin 6 &

The values of ¢’ at 1000 metre intervals have been tabulated in the 1.S.G,
Tables. .

7.7 Zone to Zone Transformation

In the vicinity of zone boundaries, the co-ordinates of a point will frequently
be required referred to the origin of both of the neighbouring zones.

One method of computation of co-ordinates from zone to zone is to convert
the given grid co-ordinates into geographic co-ordinates and then, using the central
meridian of the adjacent zone, convert the geographic co-ordinates into grid co-
ordinates.

If geographic co-ordinates are not required, a direct solution is available.
The method proposed by E. Gotthardt and published in a German textbook by W.
Grossman: Geodetische Rechnungen und Abbildungen, 1964 edition, page 188, has been
adopted in this Manual. The mathematical theory of the method is also discussed by
R. A. Hirvonen and W. Hristow in the periodical: Zeitschrift fur Vermessungswesen,
1938, pages 321 and 534.

The formulae for the coefficients k,~k, are quoted below. Values of these

coefficients are tabulated in annexure G for the Integrated Survey Grid, New South
Wales, for latitudes 28°-38° S.

1
k1=+

PP cos® by (3 — 4 tan2p,) w,?
0

2T

; Pk 1 .
N sing, (1 -+ 5 tan$,) w, -—QES— sin ¢, cos®p, (37 — 26 tanp,) w,®
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1 1
ks = S cosdg (1 4 e*cos?p,) wy + o cos’d, (1 + 31 tan3p,) w,?

0 0

3
ko = -+ singy cospo (1 + ¢* cosp)og
0

1
4 sing, cos®p, (1 — 13 tan®py)w,*
2N,
2
ky = —2sin’$, s — -3-5in295(, cos?d, (2 — tanZp,) m,!
0 2 -
kg = —2sindym, — 5 sing, cos*b, (1 — 2 tan’p, + 3¢ cos?dy)m,®

2
AT sing, coslp, (2 — 11 tan®p, + 2 tanid,) m,’

Values of k;-k4 are calculated for points at 30-minute intervals along the
zone boundary. ¢, is the latitude of the point selected which is closest to the latitude
of the point being transformed.

g is half of the zone width, in radians.
Assuming that
E— E, =AEand E.107°= ()
N—Ny=ANand N.10-% = (x)
where E, and N, are 1.S.G. co-ordinates for the adopted point on the zone
boundary with latitude ¢,. New co-efficients K, to K are calculated as follows:
ky(y) — ko(X)ks = K, ky(x) + ky(V)ky = K,
Ky(y) — Ky(x)k; = K; Ky(x) + Ky(y)ks = Kq
The transformed co-ordinates are then computed by the formulae:
E' = E'y +4E + Ki(y) — Ky(x)
N’ =N’y + AN + Ky(x) + Ko(»)
Symbols and sign convention:
West zone to east zone: Ey = E'q west; E'g = E'y east
ks, k¢ positive and k, negative
East zone to west zone: Ey = Ej.casts E'g = E'y west
ks, kg negative and k, positive
Note: E’; west and E’j eaqt are values tabulated in annexure G.

Method of Calculation. Select a line in the table for which the tabulated
Northing N, is the closest to the given N value. Enter the values shown on the selected
line, without any interpolation, for co-efficients k to k4 on the Form in annexure H,
with the corresponding signs.

Determine the signs for those terms shown as absolute values only, according
to the rules shown at the bottom of the table.

Enter also values for £, N, E'y, N',. Compute and enter 4E, AN, (p), (x).
Arithmetic operations are carried out in the order indicated on the form.

Check the result by the transformation of the obtained values back to the
originally given values, using lower half of the form.
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77 INTEGRATED SURVEY

Example.
Given: Co-ordinates of Point A (metres) in West zone:
E = 422145515 Zone: 55/2

N =1 817 938.975
Calculate: The corresponding values of Point A in the East Zone

Selecting a position on zone boundary at latitude of 28°30’ in the table of
annexure G the computations are carried out on annexed form H.

TABLE V
Zone to Zone Transformation
Zone 54/2 54/3 55/1 55/2 55/3 56/1 56/2
C.M. 141° 143° 145° 147° 149° 151" 1537
Station A Zone 55/2 to Zone 55/3
E 422 145.515 N 1 817 938.975
s 397 901.321 N, 1845917.131
AE -+ 24244.194 AN —  27978.156
) 4+ 0.24244 2 (x) - 0.27978 2
k() == 0.0008 ky(x) - 0.0010
— ky(x) + 0.0196 ky(y) + 0.0170
kg — 24,1467 k, — 0.6035
K, - 24,1263 .3 —_ 0.5875
Ky(») — 5.8492 Ky(x) e 6.7501
— K (x) - 0.1644 K,(v) — 0.1424
ks -- 13.8729 kg £ 1 665.6539
K - 19.8865 Ky =4 1672.2616
Ki(y) -- 4.8213 Ky(x) -+ 5.5639
— Ky(x) 4+ 467.8687 Ky(y) 25 405.4264
AE 24 244,194 AN — 1 27978356
Es 202 098.679 N’y 1 845917.131
E’ 226 805.920 N 1 818 349.965
Answer: E 226 805.920 Zone 55/3

N 1818 349.965

8. TRANSFORMATION OF CO-ORDINATES FROM ONE CO-ORDINATE
SYSTEM INTO ANOTHER

8.1 Transformation from Australian Map Grid to Integrated Survey Grid co-ordinates

The transformation of co-ordinates from the Australian Map Grid system
into the Integrated Survey Grid system and vice versa can be carried out directly
through geographical values as noted in para. 7.1.
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DEFINITION AND APPLICATIONS 8.2

Each 6 A.M.G. zone is covered by three 2° 1.S.G. zones. In the middle zone
of these three 1.S.G. zones, the conversion is simple because both projections have
the same central meridian. Only three steps are necessary for conversion from A.M.G.
co-ordinates (suffix ¢) to 1.S.G. (suffix ,)

(1) Transform A.M.G. co-ordinates from false origin to true origin

ve = Eg — 500 000 xg = Ng — 10 000 000
(2) Multiply by ratio of central scale factors
0.99994
= 1.00034 0136
0.9996
(3) Transform 1.S.G. co-ordinates from true origin to false origin
E, =y, -+ 300 000 N, = x, -+ 5000 000
Example. Conversion from A.M.G. 55 to I.S.G. 55/2 co-ordinates
On A M.G. 55 E 622 103.983 N 6 819 020.940

5 = (E5 — 500 000) x 1.00034 0136
— (622 103.983 — 500 000) < 1.00034 0136
— 122 145.515

x3 = (N, — 10000 000) x 1.00034 0136
— (6 819 020.940 — 10 000 000) > 1.00034 0136
— — 3182 061.025

Thus co-ordinates on 1.S.G. 55/2 are:
E 422 145,515 N 1817 938.975

For the conversion in the converse direction, 1.5.G. to A.M.G., the ratio in
Step (2) becomes
0.9996

0.99994

= 0.99965 9980

8.2  Transformation by plane bearing and distance

The following method may be used for the transformation of co-ordinates
of any co-ordinate system into the I.S.G. system, if co-ordinates of one or more points
are known in both systems. The method is suitable for desk top calculators of the
programmable or non-programmable type.

Case 1 is the case where it is possible to convert distances and bearings on
each of the co-ordinate systems to the corresponding spheroidal distances and azi-
muths. Such co-ordinate systems include I.S.G., A.M.G. systems and others. Only
one point common to both systems is required, but it is preferable to use two such
points and to repeat the procedure using a second point, to provide an independent
check on the transformed co-ordinates.

The principle of the computation is to convert the distance and bearing be-
tween the point whose co-ordinates are known on both systems and the point whose
co-ordinates are to be transformed, to the corresponding spheroidal quantities and
then work from the spheroid onto the plane of the new (1.S.G.) system

Given: Co-ordinates of A on System | and on the 1.S.G.
Co-ordinates of X on System 1.
Calculate: Co-ordinates of X on the 1.S.G.
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8.2 INTEGRATED SURVEY

Method: (1) Calculate bearing and distance AX on co-ordinate system 1. (Join
calculation, see para. 10.1.)

(2) Apply arc-to-chord and grid convergence to the bearing, and scale,
and, if appropriate, sea level correction to the distance, to obtain
the azimuth and spheroidal distance of the corresponding line on the
spheroid.

(3) Now calculate arc-to-chord, grid convergence and scale corrections
on the I.S.G. system, for the line AX. If this is a very long line
it may be necessary to calculate approximate co-ordinates of X on
the I.S.G. in order to calculate the corrections to sufficient accuracy.
These corrections are then applied to the spheroidal quantities to
obtain the plane bearing and distance on the I.S.G. Some care is
necessary in determining the signs of the corrections, since the
conversion is from spheroid to projection in this case,

(4) Calculate the co-ordinates of X on the 1.S.G. from the co-ordinates
of A and the bearing and distance AX (radiation calculation, see
para. 10.2).

(5) As a check, repeat the transformation using a second Point B
whose co-ordinates are known on both systems.

Case 2. It is not always possible to convert data on a co-ordinate system to the
corresponding values on the spheroid. The formulae relating them may not be known,
or the data for the conversion may not be available. Case 2 deals with this situation.
It is still possible to carry out the transformation if there are at least two points
whose co-ordinates are known on both systems. Two such points is the minimum,
but it is preferable to use a third in order to provide a check on the results. The point
for transformation should be within the triangle formed by the three points, for
example in figure 4, X is within the figure ABC, but Y is not. Points AB and D should
be used for its transformation. To reduce the effects of changes in scale and orienta-
tion in the survey, the distances between A,B,C and X should not be large.

The principle of the computation is to use distances and bearings of a line
AB common to both systems, to determine the scale and orientation differences
between them. These differences are then applied to the lines AX and BX to calculate
X on the second system.

Given: Co-ordinates of A and B on Systems | and 2.
Co-ordinates of X on System 1,

Calculate: Co-ordinates of X on System 2.

Method: (1) Calculate bearings and distances AB on both systems.

(2) Deduce the transformation scale factor, which is the length AB
on System 2 over the length on System 1; and the transformation
orientation correction which is the bearing of AB on System 2
minus the bearing on System 1.

(3) Calculate the bearings and distances AX and BX on System 1.

(4) Apply the transformation scale factor and orienting correction to
obtain AX and BX on System 2.

(5) Calculate co-ordinates of X on System 2 from A and, as a check on
its computation only, from B.

(6) As an independent check, repeat the computation using a third
point, C, in place of B. This will generally not produce identical
results for X, but they should be sufficiently close that the mean can
be adopted.
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FIGURE 4—TRANSFORMATION OF CO-ORDINATES OF X AND Y

8.3 Lauf’s transformation

The transformation from any conformal co-ordinate system into another may
be effected by the method of Professor Lauf. Complex number arithmetic is used for
the transformation and the procedure is based on co-ordinates known in both systems
for three or four common points. The points to be transformed should be situated
inside the area formed by the lines joining these points.

This is a more sophisticated procedure than that of the previous paragraph,
because it takes into account variations in scale and orientation over the area covered
by the common points. Normally it would only be attempted using an electronic
computer, and programmes are available for transformation by this method.

To detect possible errors in the co-ordinates of these points and to provide a
check on the general accuracy. other points, the co-ordinates of which are known in
both systems, may be included as points to be transformed.

This method is suitable for the transformation of co-ordinates from the yard
grid system on the Clarke’s 1858 spheroid into the 1.S.G. system. However, care
should be taken to maintain consistency in co-ordinates. The yard values of the com-
mon points used as basis for the transformation should correspond with the values
used for co-ordination of the points to be transformed.

The method may also be used for the transformation of co-ordinates of a local
system into the 1.S.G. system. In local systems, generally no projection corrections
have been applied and such systems may be assumed to be conformal for the purpose,
if the extent of the area covered in E-W direction is reasonably small.

For the transformation of co-ordinates of the Cassini-Soldner system, the
terms (y3/6R? - y3/24R%) should be added to the Cassini-Soldner Y co-ordinate
(departure) to obtain corresponding conformal values, before commencing the
transformation computation.
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9. CO-ORDINATE COMPUTATIONS

Part 2 of the Manual deals with co-ordinate computations on the projection
plane. Section 10 indicates, for the basic computations, the data, the purpose and the
formulae used. It provides a standard layout and an example of each and draws
attention to special features, such as the method of checking the computation. The
main section comprises an example of a control survey, computed by semi-graphic
methods, and the connection of a property survey to the control. This is preceded by
a section which gives detailed explanations and comments on the calculations, and
which, for those who are unfamiliar with this form of computation, should make it
easier to follow,

Although the increasing use of pocket and desk-top calculators has brought
changes in computations, the forms in this part are basically those of the earlier era
of hand calculator and natural tables. This is because the computations, when set
out in this fuller format, provide better illustrations and are more easily followed.
This format can be readily adapted and abbreviated for electronic calculators, bearing
in mind that the process of abbreviation can be overdone. It is valuable to record
appropriate intermediate results, to help in checking and to provide data for other
purposes.

The example is calculated to a higher precision than is justified by the circum-
stances. Again this is in order to provide a better illustration of the computations,
the corrections and the checks. This example is also atypical of surveys on the
1.S.G. in other respects. Normally, far more use would be made of edm measurements
and a smaller proportion of the survey would be devoted to extending the control
into the property survey. This is discussed in more detail in section 13.

10. STANDARD PLANE CO-ORDINATE COMPUTATIONS
10,1 The Join
In the join or bearing and distance calculation, the co-ordinates of two points
A and B are given and it is required to compute the plane bearing and distance.

Formulae

EB = E_,’ AE
tan 0 = = or ...(10.1)
NB - NA AN

NB—NA AN

cot f = = ...(10.2)
E;; R EA AE
AE
S =— ai(10:3)
sin 0
AN
S= ...(10.4)
cos 0
Standard Form
A E, N, cotf or tanf 0
B E; Ny sinf ' Yy
E,BHEA NB_NA COSG S




10.1

A
B

10.2

INTEGRATED SURVEY

Comments

1. If AE is smaller than AN, use equations (10.1) and (10.4) to determine ¢
and S, as they will yield the more accurate values. If AN is the smaller, use
(10.2) and (10.3).

2. The second value of S is calculated as a check on the computation.
Note however that it is not a complete check; it is not capable of detecting
errors in the determination of AE or AN, or in looking up or writing out the
bearing 6. These need to be checked independently.

3. The quadrant of @ is determined from the signs of AE and AN. If ¢’

is the first quadrant angle determined from equation (10.1) or (10.2), then 0 is
deduced as shown in the final column of Table VI.

TABLE VI
Sign of  Sign of
Quadrant AE AN Calculation of 0
0— 90° First —+ -+ =0
90 — 180° Second + -- H = 180° — @'
180 — 270° Third — — 0 = 180° 4 6’
270 — 360° Fourth - - 6 = 360° — &'
Example
422 145.515 1817 938.975 | cot 0.41909 849 202°44'18".54
398 112.145 1828 011.324 — 0.92227 868 26 058.685
| —24033.370 -+ 10 072.349 4 0.38652 558 | 26058.687
Notes

1. AN < AE, therefore use equation (10.2), coran;gent formula for 0, and
equation (10.3) sine formula for S.

2. 6" = 67°15'41”.46. Signs of AE, AN are —, -+. Thus 6 is in fourth
quadrant, 6 = 360°—0".

3. In the Numerical Example, section 12, the join is used for orientation
on page 3 and for checking directions on pages /5 and /6.

The Radiation
The radiation or polar calculation is the converse of the join. The co-ordinates

of point 4 and the bearing and distance to point B are given and it is required to
calculate co-ordinates of B.

Formulae -
Ep=E,+ Ssinl 233 (10.5)
Ny =N, + Scos ...(10.6)
Standard Form
A | | E, N,
S, sin Ssin 0 Scos @
] cos 0 '
B | | Ey Ny
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CO-ORDINATE COMPUTATIONS 10.3

Comments

1. Correct signs of sin § and cos 6 must be applied. These signs are the
same as those of AE and AN in table VI, para 10.1.

2. The computation is unchecked. Usually a radiation is checked in the
field by independent measurements. These are calculated to yield independent
co-ordinates for the point, thus checking field work and calculations. Alterna-
tively the calculation may be checked using:

AE + AN = /2 S sin (6 + 45°) ...(10.7)
AE — AN = —4/2 S cos (6 + 45°) ...(10.8)
Example
A 422 145.515 1 817938.975
26 058.685 —0.92227868 | —24033.370 + 10072.348
292°44’18" 54 -1-0.38652 558
B 398 112.145 1828011.323 |

Note Examples of the radiation calculation in the Numerical Example,
section 12 are on page 7 where it is used to obtain the preliminary co-ordinate, and
on pages /5 and /6 where it is used for fixing and checking co-ordinates of corners.

10.3 The Intersection

In the intersection or triangle calculation, the co-ordinates of two points 4
and B are given and the bearings 6,, #, from 4 and B to a third point P. The co-
ordinates of P are required.

Formulae 5 o " )
! (Np — N)tan 0, — =k
N!, g N , _:‘ B A ) 2 ( B A

was (109
tan 0, — tan f, I

Ny — N)tan 6, — (E; — E :
Ny gt O TR g B - -(10.10)
tan 0, — tan 0,

E, = E, + (N, — N,) tan 0, ...(10.11)
Ep = Ej + (Npy —Nyg)tan 6, --+(10.12)
Sy = (Np — N,) sec 6, = (E, — E,) cosec 0,
S, = (Np — Np)sec 0, = (E, — E;) cosec 0,

Standard Form
A | E, ‘ N, ' 0, !
B ' F N, f,
By~ Exl 1)) Ny —N,
sec 0, | Ep—E, { N, —N, tan 6, S,
Sec 03 | EP—EB I NpﬁNH tan 02 Sz
| (tan 6, — tan 6,)
P . Ex ‘ N,
Comments

I. Np and E, are each calculated twice so as to provide a check on the
computation. This is a rigorous check, except that an error in determining
(tan 0, — tan 0,) will not be detected. This subtraction needs to be checked

independently.
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2. Correct signs must be applied. Tan 0 is -+ in first and third quadrants,

10.3
— in second and fourth.
Example

A 422 145.515
B 308112.145
—24033.370
—1.84798 12 | —18509.664
—1.03108 55 5523.706
B 403 635.851

1828011.324
-+ 10072.349
— 11910.688
— 21983.037 |

1 806 028.287

1 817 938.975 l

237°14'21".6
165 5342.8
+1,55403 82

—0.25127 13
—1.80530 95

22010.73
22 666.39

Note The intersection calculation is used on pages &8 and 9 of the Numerical
Example to calculate preliminary co-ordinates of points.

10.4 The Cut

Given a bearing 0 from a known point C, the point where the bearing cuts
any specified co-ordinate value can be determined. In particular, the “cut” of the
bearing on the preliminary co-ordinate of a point P is calculated in order to portray

graphically the rays used in fixing P.

Given preliminary co-ordinates of P: E(,), N(p). Required to determine where
the ray of bearing 0 from C (E., N.) cuts the ordinate Ep, or N(p). The ray cuts
Ep) at the point of northing N,.; or Ny, at a point of Easting E;..

Ne
Nu-)

Formulae
Form (A)
Ep =E¢+ (N — No) tan 0
S =N — Np)sech
or
Form (B)
Np =N+ (Ep) — Eg) cot 0
S = (Epy — E;)cosec
Standard Form
Form (A4)
(24 E,
tan 0

(Nipy — N) tan 6

P

Form (B)
C E;
EIP)
E(p) i Ec
cosec 1
S
Comments

NtPJ > Nc
sec f
S

Ne

cot 6
(Epy — Ec)cot 0

P

...(10.13)
..(10.14

..(10.15)
. .(10.16)

1. The cut is chosen so that it intersects the ordinate at an angle closer
to 90° i.e. greater than 45°. This means that equations (10.13) and (10.14) and
Standard Form (A4) are used when 6 is closer to the north-south direction (315°—
45°; 135° — 225°). In this case AN is greater than AE and tan 0 is less than unity.
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10.5

Conversely Form (B) is used for 0 closer to the east-west direction (45° — 135°;
225° — 315°), when E is greater than 4N and cot 0 is less than unity.

Example
Form (A4)
C 391 050.617 1 831 727.990 333°54'29".5
1 806 028.287
—0.48971 76 —25699.703
+12 585.597 1.11347 25
P 403 636.214 28 615.912
Form (B)
D 387 602,396 1802 421.729 7719 21.0
403 635.851
716 033.453 +0.22494 71
1.02498 84 +3 606.679
e 16 434.105 1 806 028.408
Note

1. Signs of AE and AN are derived from co-ordinates and tan 6 or cot 0.
As a check, note that they should be consistent with the signs in table VI, para
10.1.

2. The calculation of the cut is used in the Numerical Example on pages
7, 8 and 10* for calculating the positions of fixing rays to be used in the error
figures.

10.5 The Semi-Graphic Intersection

In the semi-graphic intersection the directions observed to fix a point are
calculated and then plotted in graphical form. A preliminary position is first determined
using the intersection calculation, or, if a distance has been measured to the point,
by the radiation calculation. The bearings to or from other points are then used to
calculate the cuts on these preliminary co-ordinates. These calculations provide the
data for the graph. The semi-graphic intersection is a combination of calculations
which have been covered in earlier paragraphs.

The graph shows, in general, that the rays do not all pass through the same
point but intersect to form an error figure which is triangular if there are three rays,
and more complex if there are more. The final point must be chosen so as to minimize
the errors. The relative weighting is taken into account if the position of the final
point is chosen within the error figure, placed so that its distance from each ray is
proportional to the length of the ray, that is, the distance to the other station. When
there are three rays this is a simple estimation, but with four or more, inconsistencies
may arise and the choice may become a matter of opinion.

Examples of the graphs are shown on pages 7 and 8 of the Numerical Example.
On page 7 there are five rays and the final point can be chosen by resolving in two
directions: the direction of the rays Pl and PS5, and the direction more or less at
right angles, being the combination of the rays P3, P4 and the distance from PI.

On page &8 the error figure is triangular, the rays are all observed in the forward
direction only and all are of nearly the same length. The chosen point is then simply
the centre of gravity of the triangle.

The check is provided by noting that the error figure is small, and that the
discrepancies between the plotted rays and the final point are allowable errors of

*The Numerical Example is given in section 12 and page numbers in the example are
referred to in Italic numerals,
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10.5 INTEGRATED SURVEY

observation. As an independent check, joins can be calculated to all fixing stations,
and a comparison made of the differences between observed and calculated bearings.
This provides a check on the complete numerical computation, and also an indication
whether an appropriate position has been chosen in the error figure.

10.6 ;T}re Resection

* In a resection the position of an unknown point is calculated using directions
observed from the point to stations of known co-ordinates. Generally three such
observations fix the position uniquely, but provide no check. A minimum of four.
but preferably five or six suitably positioned stations should be observed to provide
checked co-ordinates.

Given observed directions from P to five stations A, B, C, Dand E, it is
required to calculate co-ordinates of P. Co-ordinates of the five stations are known.
In the calculation of the resection proper, three of the rays, say 4, B and C, are
chosen to calculate a unique solution. They should preferably be the rays providing
the strongest fix. The first step is to solve for the orientation. The calculation shown
illustrates only one of many methods available. Once the bearing of one of the rays
has been calculated all the observed directions can be oriented and the calculation
becomes similar to the semi-graphical intersection calculation in para 10.5. The steps
which follow are calculations of the preliminary co-ordinates from two rays 4 and C
using the intersection calculation, followed by the cur of the third ray B. Unless
there are errors in the calculation, this cut will pass exactly through the preliminary
point. This provides a check on the calculation but not on the observations or data.
[t is necessary to calculate the cuts from D and E to provide a check.

Formulae

I. Calculate the orientation. See figure 9, page 9 of numerical example.
Observations to 4, B and C. Angles calculated from observed directions: o sub-
tended by 4 and B; and f subtended by B and C.

N,cota — Ny(cota 4 cotB) + Npcotfi + (E, — E})

E cota — Ey(cota + cotp) + E.cotfp — (N, — N,)

2. Deduce the orienting swing and apply it to all observed directions.

3. Calculate the preliminary co-ordinates the Intersection of P from
A and C.

4, Calculate the cut from B. This cut must pass through the preliminary
point.

5. Calculate cuts from D and E.

6. Plot the graph and select the position of the final point.

<o (10.17)

cot 9’)3 i

Standard Form
A ~ E, N | =ep—ey | cot « '
B E, [ N f=¢-—s; | cotf |
At E: | Ne ; |
| l cota -+ cot f |
‘ Ep—=Ey | Ny~ Ng
cot O,y |

Opp ‘ | !
€p : AU ARl l

ep —0pp | = Orienting swing |

- This is followed by the calculation of the intersection, the calculation of cuts
and the plotting of the graph.
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Comment: The danger circle

The resection is a useful method where, in a survey, it is necessary to bring
control in from surrounding control points. The advantage is that it requires observa-
tions from only one point and this advantage is of greater importance if access to the
control points is difficult. However there are some disadvantages: it may be difficult
to find a point from which five or six suitably situated control points are visible: and
the calculation is somewhat longer and more complex than the standard intersection.
The main disadvantage lies in the existence of the danger circle.

The circle passing through the fixed points A4, B, and C which are observed
from P for the resection, is significant. At all points on that circle, the same angle «
is subtended between 4 and B, and the same angle £ between B and C. This means
that if P is on the danger circle ABC, its position is indeterminate, and if it is close
to the danger circle its position is uncertain, or subject to considerable error. The
rays to further points D and E may overcome this ambiguity, but there is a possibility
that these points, too, may be close to the same circle and add little to the deter-
mination. In any case, the value of one of the three rays to A, B and C is lost if P is
close to the danger circle.

It is imperative to investigate, during the reconnaissance phase of the survey,
whether the resection point is well away from the danger circles formed by each
grouping of three of the control points used, Unless this question is explicitly
examined, it is easy to overlook a dangerously insecure determination of a point.
The uncertainty will not necessarily show up in the computations.

Because of this hidden danger, serious consideration should always be given
to adding extra observations in the form of one or more forward bearings or distances
to the unknown point P.

Example
An example of a resection from five control points appears on pages 9 and 70
of the Numerical Example.
Note The rays drawn in the graph, page /0, do not have the same significance
as in a normal error figure. In the graph of a normal intersection (eg pages 7, 8)
cach ray is a locus and the final point should be as close as possible to all rays. In a
resection graph, on the other hand, the equivalent locus is the tangent to the circle
which subtends the angle measured between each pair of stations. Four such tangents
are drawn in the graph. One way of drawing the tangents is, first, to indicate a set
of “shadow rays” (dashed lines in graph) each of which is parallel to the original
ray but displaced by an amount which is proportional to the length of the ray. In
this case all the displacements are in an anticlockwise (negative) sense and equivalent
to a swing of —0.6”. On the ray of length 14331 m, the displacement is

X 14331) = —0.042 m
( 206 000

Having graphed the shadow rays, the tangents can be drawn in by joining up
corresponding intersections of the original and the “shadow rays™ (double lines in
graph). Each tangent is a locus, the fangents form the error figure and the final point
must be chosen as close as possible to all tangents. The example is unusual in that
the tangents all pass through the same point. Selection of the final position in the
error figure can become a problem, particularly if the number of rays is large. For
three rays, the number of tangents is three, and they all pass through a single point.
For four rays, there are six tangents; for five rays, ten tangents and for six rays,
fifteen. It becomes necessary to select the more important intersections and to draw
only the tangents corresponding to these intersections.
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10.7  Area from Co-ordinates

Formulae

If a figure has corner points with known co-ordinates then the area 4 can be
calculated from one of the formulae (10.18) or (10.19) below. The other can then be
used as a check.

The figure has # corner points numbered / to » in clockwise order. Equation
(10.18) should give a negative result.

A =3{E(Ny — N,) + E(Ny— Ny) + Ey(Ny — N) + ... + Ey(Ny — Npy)}
-..(10.18)
A= %{NI(EB o En) + Nz(Ea _E'l) i NS(EI = EE) —i_ R LD —{_ N‘-'I (E.l _En—l)}
...(10.19)
Example

The figure C.D.2.F.8. in section 12 (figure 11, page /2). The co-ordinates are
copied from the Co-ordinate List, page /1. n = 5

Point
No. E N
5 -+ 127 162.05 - 25574.16

C +127009.76 -+ 24 783.65
D -+ 125409.16 - 25092.10
2 -+ 125561.63 -+ 25883.11
F +125759.26 - 25844.37
8 +127162.05 - 25574.16

1 +127009.76 -+ 24 783.65
24 — —2 568 764.50 = 2 568 764.5
A = 1284 382.25 m?
— 128.4382 Ha

o b o~
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11. NUMERICAL EXAMPLE—CO-ORDINATION OF A CONTROL
SURVEY BY SEMI-GRAPHIC METHODS AND CONNECTED
PROPERTY SURVEY: EXPLANATION

11.1  Introduction

As an example to illustrate the details of co-ordinate computations, a high
precision survey is calculated by semi-graphic methods, the calculations being shown
in section 12. In the present section a detailed explanation and commentary is given.
Section 12 forms a separate unit, with pages numbered from / to /8 (Italic script
numerals) at the top, and references in sections 11 and 12 are to these page numbers.
Each numbered page contains the material which would appear on one handwritten
sheet of calculations, though in some cases this takes up more than one page in the
Manual.

The example is a hypothetical one and several features have been chosen so
as to provide the best form of illustration; it is calculated to high precision (0.001 m
and 07.1); it is calculated by semi-graphic methods even though such a survey
would normally be calculated by least squares methods on an electronic computer;
and very large values have been adopted for the Eastings in order to increase the
size of the projection corrections.

In a survey computed by semi-graphic methods, the points to be fixed
must be calculated in a specific sequence as each point, as it has been calculated,
must be able to be used as a fixed point for the calculation of subsequent points in
the sequence.

This requires, therefore, that the reconnaissance is carried out so that each
point stands on its own in the sequence of calculation. This point is brought out in
the Plan of Triangulation (page 2) where X is fixed first, ¥ second, using X for this
purpose, and finally Z, using both X and Y as fixed points.

In practice, this often means that many more redundant observations must
be made than is necessary for the least squares method of calculation, where the
fixing of all the points is carried out simultaneously and not sequentially.

11.2  Preliminary—Abstract of Observations

To facilitate standardization, angular measurements are made on »n arcs with
n zeros, where n is 2, 4, 8 or 16 depending on the precision required. The circle is
shifted between each arc by (180° + V)/n where V is the micrometer length of the
theodolite used e.g. 10’ for a Wild T2. (See table VII).

Each arc is meaned and all subsequent arcs have such a constant applied to
the mean that each is reduced to the same value as the first observation of the first
arc. This practice makes comparison easy. The grand mean is then used in calculation.

It is common practice in Australia to start the first arc with a value near zero
(table VII, method 2). There are also advantages in setting the first reading of the
first arc to a value close to the bearing of this line. This has been illustrated in the
numerical example (table VII, method 1). This practice results in orienting swings
which are small quantities (seconds only), easily applied, thus avoiding the awkward
operations of adding and subtracting degrees, minutes and seconds.

11.3  Preliminary—Eccentric Observations

When it is not possible to set up over a control point, observations are taken
instead from a position as near as possible to the point. This nearby position is
called an eccentric station or satellite station.
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11.2 INTEGRATED SURVEY
TaBLE VII
Example of Field Observations
METHOD 1: Observations in Approximate Bearing
AT FL FR FR—FL MEAN
b ARC I
£2 263°1506:5" 83° 157 13.9" +7.4" 263°1510.2"
P3 292 44 009 112 44 10.5 +9.6 292 44 05.7
X 15 13 574 195 14 05.4 +80 15 14 014
ARC I —45 —2-21.3
P2 308 17 29.0 128 17 34.0 150 308 17 31.5
P3 337 46 22.8 157 46 30.0 +7.2 337 46 26.4
X 60 16 21.7 240 16 262 +4.5 60 16 24.0
ARC 1T —90 —5+02.7
P2 353 20 032 173 20 11.8 +8.6 353 20 07.5
P3 22 48 54.6 202 49 04.0 +94 22 48 593
X 105 18 548 295 19 000 +5.2 105 18 574
ARC IV =135 =7—-23.2
P2 38 22 30.3 218 22 36.5 +6.2° 38 22 3134
P3 67 51 26.8 247 51 372 +10.4 67 51 32.0
Xuo 180 21209 1330 21.284 +7.5 150 21 246-
Comparison and Combination of Arcs
I H ﬂ I_V Grand Mean
P20 2637 15’ 10:2" 02637 15 1027 - (126371551027 . 2632 15°10.2" .263° 15°10.2¢
P3 292 44 05.7 292 44 05.1 292 44 02.0 292 44 08.8 292 44 054
X 15 14 01.4 15 14 02.7 15 14 00.1 15 14 01.4 15 14 01.4
METHOD 2: Observations on 0° R.efcrence\
AT FL FR  FR-FL MEAN
Pl ARC I 102
P2 00°00706.5° 180°00°13.9”7 +74  00° 00" 10.2"
P3 29 29 009 209 29 10.5 9.6 29 29 05.7
X 111 58 57.4 291 59 054 +8.0 111 59 014
ARC I —45 02 3.5
P2 45 02 29.0 225 02 340 50 45027315
P3 74 31 228 254 31 30.0 +7.2. 74 31 264
X 157 01 21.7 337 01 26.2 4,5 157 01 24.0
ARC I11 —90 05 07.5
P2 90 05 03.2 "70 05 11.8 +8.6 90 05 07.5
P3 119 33 54.6 299 34 04.0 +94 119 33 59.3
X 202 03 54.8 22 04 00,0 52 202 03 574
ARC IV —135 07 33{_
P2 135 07 30.3 315 07:36.5 462 135 07 334
P3 164 36 268 344 36 37.2 +104 164 36 320
X 247 06 209 67 06 284 7.5 247 06 24.6
Comparison and Combination of Arcs
1 l[ ﬂ v Grand Mean
2 00° 007 00.07 007 00" 00.0" 00° 00 00.0” 00° 00’ 00.0" 00° 00’ 00.0"
P3 20 28 55.5 29 28 54.9 29 28 51.8 29 28 58.6 29 28 55.2
X 158512 111 58 52,5 111 58 499 111 58 51.2 111 58 51.2
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CO-ORDINATE COMPUTATIONS 11.4

If, at the eccentric station S of a station P, directions are observed to stations
A and B, including the direction and length to station P, the correction x to be
applied to the observed directions, for the reduction to P, may be computed by the
formula: 3

sinx = —Ssina
D
where D is the distance between P and the observed station and a is the angle

reckoned clockwise from SP to the observed station, the sign of the correction
depending on the sign of sin a.

Assuming that x in radians = sin x, for small angles

2062657 d
X" =————sIna
D

FIGURE 5—REDUCTION OF ECCENTRIC OBSERVATIONS TO CENTRE.

Example
d=451m 206 265 d = 930 300
Observed a sin a D x' X Reduced
A 0°0" 0.0 | 284°49" | —.96675 | 20 150 | —44".6 0 0°0" 07.0

B | 23015151 | 15504 | +.42156 | 15110 | +26".0 | +70".0 |23016 25.7
r 75 11

If the reading to station 4 is zero, it is convenient to reduce x’ for this direction
to 0, by adding -+-44.6” to each x".

11.4 The Control Survey—The Co-ordinate List

The co-ordinate sheet (page /) shows the 1.S.G. zone of the co-ordinate values
used and serves as a ready reference of final co-ordinates as the survey is calculated.

A constant is usually incorporated for convenience. Such constant in any
list consists of the figures which are common to all co-ordinate values in the list.

As each point is calculated, its final values are entered on the co-ordinate
list and when this value is required in further ca}cqlat;on, it is taken from the co-
ordinate list. This practice ensures correct transcription of values.
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11.5 INTEGRATED SURVEY

11.5 The Control Survey—Projection Corrections

In order to reduce the observations to the plane of projection it is necessary
to have approximate values of the co-ordinates of the stations. Generally, sufficient
accuracy is obtained from a plan of the survey to a suitable scale as shown in the
attached example (Page 2). If higher accuracy is necessary, approximate co-ordinates
can be calculated from the unreduced observations.

The orientation data, scale factor and arc-to-chord corrections are shown in
the example under Miscellaneous Calculations (pages 3 and 4). The application of
scale factor and arc-to-chord corrections is carried out on the Abstract Sheet as
shown in the example (pages 5 and 6). Later calculations follow in the same manner.

11.6 The Control Survey—Direction Sheet

The orientation of observed directions is a process of iteration, as is shown
in the example (pages 5 and 6). In this para 11.6, the process is described briefly.
However it is essential to master the steps of the compilation, otherwise the simplicity
of the method will not be appreciated. Therefore the process is described step by
step in the following para 11.7.

The process consists in the first place of determining the orienting swings
required along the lines between the trigonometrical stations at Pl, P4 and PS5.
These are final values, since the co-ordinates of these stations are fixed and final
values. These values are -}-13.8” and +16.0” respectively at Pl and the bearing of
P1—X at this stage is obtained by applying the mean swing of --14.9” to the plane
direction observed as 15° 14" 13.5".

In the same way at P4 and PS5, preliminary values of the bearings to X are
obtained as 312° 57" 43.4” and 190° 20" 11.5” respectively.

These three values are now used to orientate the observed plane directions
at X. They give rise to preliminary orienting swings of 20.5”, 23.9” and 20.3”. The
mean of 21.6” is applied to the observed values and this gives seven bearings from
which the position of X is to be determined. These are—

Pl.X 15°14" 13.5” X.Pl 195% 14" 11.2°
P4.X 312 57 434 X.P4 132 57 445
POLX " 190 20 11.5 X.P5 10 20 12.8

X.FP3 271 21 30.6

The mean of the bearings of each line as used for this purpose is shown on
the page headed “To determine X (page 7).

11.7 The Control Survey—An Explanatory Note on the Direction Sheet

Section 12, page 5 shows all of the calculations on a direction sheet, but
unless the steps of compilation are mastered, the simplicity of the method will not be
appreciated.

The principle is to derive the best values for the directions by a process of taking
means.

(a) In column 2 the Observed Directions are abstracted from the field
book; arc-to-chord corrections are entered in column 3 and applied
to the values of column 2 to give the Observed Plane Directions of
column 4.

(b) For the line P1 — P2, the Observed Plane Direction of 263° 15" 11.2"
(column 4) must be corrected by --13.8” (column 9) to give the control
or datum value of 263° 15’ 25.0” (column 10).
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CO-ORDINATE COMPUTATIONS 11.8

For the line P1 — P3, the corresponding value in column 9 is
+16.0”. These two values are close enough to suggest no major blunders
and a mean of --14.9” is taken as applicable to the third line P1 — X,
and entered in column 7. This is applied to the observed plane direction
of 159 13’ 58.6” (column 8) which is designated as (/) on the page.

Similarly at P4 and P5 the mean correction, which is an orienting
swing of observed directions, is calculated and applied to give the
directions designated as (2) and (3).
The first station to be located is, in this case, Station X, and the values
of (1), (2) and (3) above determined are carried down to column 6
for Station X and entered as reverse directions, At this stage we have
the best estimate of the three directions into Station X as derived from
control stations. But at Station X, four rays are observed out, three
of these being to the above three stations, and to adjust these four
rays the best estimate by the direction method is to orient the values
at X to accord with a mean value of the three rays observed inward.
The Observed Plane Direction 132? 57" 22.9” (column 4) of the
line X — P4 must be rotated or swung by +20.5” (column J5) to get
the value of (2) determined above for the in-ray. Similarly the swing of
+23.9” on X — Pl and +20.3” on X — PS5 is calculated and a mean
swing of --21.6” determined. This mean value is now applied to the
rays to P4, P1 and P5 (column 4) to give the values in column 8
designated (5). (6) and (7). An in-ray was not observed from P3, (there
is no entry (4) in column 6) but the mean swing is applied to give (8)
because no other better evaluation is possible.
With these values of bearings in and out and the distance PI — X
(page 6) the co-ordinates of X can be now computed (page 7). On
this page notes demonstrate the steps in the following form.

(1) ©)
Pl— X X =7l
e LI VILALL
0P1 — X 15°14' 1247 13.5 11.2
——
The mean direction in of P1 to X(1) is 13.5” (note the arrow)
‘.———
The mean reverse direction of X to P1 (5) is 11.2” (note the arrow)
The mean direction in and out is 12.4”

as our best estimate by the process of taking means, and again it
appears that there are no gross observational mistakes up to this stage.
With this value for direction and the distance Pl — X, (page 6) pre-
liminary co-ordinates of X are computed. In the three succeeding
calculations the cuts of rays from other stations are computed, again
using the mean value of the in-rays and the out-rays as oriented earlier.
Details of the computation are given in para 11.8,

11.8 The Control Survey—Computing the Co-ordinates

The distance P1.X on the projection plane is obtained from the observed
value multiplied by the scale factor (pages 3 and 6).

A preliminary position for X is required and the knotting together of all the
observed rays at this point must be shown to a sufficiently large scale. The pre-
liminary position should be one that is sufficiently close to the final position so that
no further iteration is required.
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11.8 INTEGRATED SURVEY

For the point X, this is most easily determined as a radiation from P1. There-
after, the cuts onto the co-ordinate lines through this preliminary position are
calculated as shown in the example., The larger co-ordinate difference between a
fixed point and the preliminary position of X is taken out and it is multiplied by the
lesser of the tangent or cotangent of the bearing from the fixed point to X. The
resulting difference is added algebraically to the corresponding value of the fixed
point to obtain the point of cut. The distance is also obtained by using the /esser of
the cosecant or the secant.

The knotting of the rays is then plotted, as illustrated on page 7, by drawing
the rays at the respective directions through these points of cut.

The circle defined by the distance P1..X is shown as a double line perpendicular
to the ray P1.X.

It is now necessary to find the centre of gravity of the knot point. As long
rays are weaker than short ones, each ray is given a weight inversely proportional
to its length. The centre of gravity can then be determined with sufficient accuracy
by estimation.

Finally, the corrections to the bearings to obtain those to the centre of gravity
are obtained by calculating, with slide rule accuracy, the angular swing to produce
the scaled displacement from the ray to the final position. These are applied to the
calculating bearings to obtain the final bearings,

These are entered in the direction sheet as 15° 14" 12.67, 312° 57" 42.97,
190° 20" 12.4” and 271° 21" 30.0” respectively. New orienting means of -+ 26.6” at
P4, —03.6" at P5 and --21.7” at X are taken out for computation of the next point
in the sequence of calculation.

This whole cycle is then repeated for the next point; in this example, Y (page 8).
Here the preliminary position for ¥ is determined from the intersection of the two
rays P4— Y and P5—Y

11.9 The Control Survey—The Resection

The resection for the point Z (page 9) is shown to illustrate its calculation by
means of one of the many methods of solutions. It is advantageous to calculate the
resection to get a preliminary position close to the final one rather than to do a
graphical solution, followed often by several iterations, to obtain the final value.

The observations at Z were not observed in bearing, but to keep the swing
from being very large, the bearing was estimated in the field and the circle set
accordingly. Orientation was computed along the longest ray X—P3 and after the
observed plane directions at Z were oriented, the preliminary position of Z was taken
out from an intersection of the other two rays Pl —Z and X—Z. A check on calcula-
tion was obtained by the cut of the third ray P3—Z passing exactly through the
preliminary value.

The check on the fix of Z was obtained from agreement of the redundant
rays Y—Z and P4—Z. The centre of gravity of a resection fix is obtained in a
different manner from that of a point located by intersection in which the orientation
is well determined and checked by forward rays in to the point. In the resection,
the orientation is unknown and must be determined. If the orientation is altered by
a constant, the rays will displace by amounts which are proportional to their lengths.
The circle defined by the observed angle subtended at Z by two fixed points is, how-
ever, not altered by a change in orientation of the directions. Certain of the tangents
to the circles are shown in the example of the error figure at Z by means of double
lines. The tangents will not necessatily knot together as well as occurs in this example.
The centre of gravity of the knot of the tangents is determined by estimation,

Finally the corrections to the calculating bearings are taken out and the final
bearings determined and entered at Z in the Direction Sheet (pages 5 and 6).
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11.10  Selection of the Final Point in the Error Figure

The error figures for X and Y are comparatively simple. More complex
cases arise which require careful evaluation. The error figure in a resection requires
special consideration. A statement made by Dixon will be appreciated sooner or
later by any person determining positions by the direction or semigraphical method.
...... when there are more than three rays it is not in general possible to
choose a solution which satisfies all the conditions of weights, and the choosing of a
final point becomes to a certain extent a matter of opinion. The only general rule which
I have so far been able to apply in such differences is that since someone has to make a
decision, the opinion of the head of the computing section shall carry the most weight.
However it would seem that the soundest principle to work on is that the final point
should be as close as possible to the shortest rays and distant from them in proportion
1o their lengths™.

It is also worth noting as a reassurance, that given good survey data and
sound control, there will be little difference in the final selection of a point by any
two computers.

This matter is not pursued any further in the Manual, though references in
the Bibliography are provided for further reading.

11.11  Survey for fixing the property corners—calculation of the subsidiary traverse

The following paras (11.11-11.13) describe the section of the Example which
is most typical of normal integrated surveys. It is not discussed in detail as the
methods are familiar, The subsidiary traverse (See figure 11 on page 12) was carried
out to provide control points from which the corner points of portions 118 and 141
could be fixed conveniently. These computations commence on page /1.

The angular misclosure of the traverse was first taken out and adjusted (page
13) then the co-ordinate differences were calculated and adjusted by means of the
Bowditch Rule and finally the adjusted co-ordinates taken out (page /5).

11.12 . Property survey—fixing and checking the corner points

The boundary corner F was fixed by radiation from traverse station Q. It was
checked by observing a set of directions from F to surrounding fixed points. (page
16).

The boundary corner E was fixed, also by radiation, from traverse station P.
To check it, a mark was set on line from P to Z. Directions observed at this mark
were observed to prove that the mark was on the line PZ and, by a side ray to the
trig station 21, to test the distance from P to the mark. The first radiation was then
checked by an independent one from the mark.

11.13  Property survey—co-ordination of portions 118 and 141 on the 1.5.G.

The survey of lots 118 and 141 had been carried out previously. From the
data of this survey, three traverses, a northern one, a central one and a southern
one, were calculated from E to F. For each of these, the distance and bearing between
E and F was taken out with the following results:—

Traverse Bearing E—F Distance EF

Northern 272° 54' 50" 7109.347 links
Central 272 55 16 7108.819
Southern 272 54 53 7110.287

Mean 272°55' 00" 7109.484 links
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11.13 INTEGRATED SURVEY

From the 1.S.G. co-ordinates of E and F, the corresponding bearing and
distance in metres is taken out on the 1.S.G.

This gives the following:
1.5.G. Bearing EF 283° 45' 25" Distance 1430.3483m.

The difference of 10° 50" 25 between the bearings of the common line on
the two systems is used to swing the previous survey on to the I.S.G. system and the
ratio between distances on the two systems is used to convert the link distance to
the I.S.G. metre distances.

: 1430.3483
Mean Ratio = ——— = 0.20118 88.
7109.484

With these converted values the three traverses are now recalculated and
adjusted in the usual manner by the Bowditch Rule (pages /7 and 18). These values
are shown with the misclosures as well as the adjusted co-ordinate values of the
corner points of the two properties on the 1.S.G.
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12. NUMERICAL EXAMPLE OF THE CO-ORDINATION OF A CONTROL
SURVEY BY SEMIGRAPHIC METHODS AND CONNECTION OF A
PROPERTY SURVEY TO THE CONTROL

CONTROL SURVEY

LAND BOARD DISTRICT ........ o DIVISION
based on I.S.G. Zone 55/3 (Central Meridian 149° E.) Trig. Control

Contents
Page
) Co-ordinate List
2 Triangulation Sketch
34 Miscellaneous Calculations
5-6 Abstract of Observations and Direction Sheet
7-10 Determination of Co-ordinates
SUBSIDIARY SURVEY
FOR FIXING PROPERTY CORNERS
PORTIONS 118 AND 141
COUNTX OBRILE s dins PARISH OF.vian e
Contents
Page
11 Co-ordinate List
12 Diagram of portions
13-14 Abstract of Observations and Direction Sheet
15 Calculation and Adjustment of Main Traverse
15-16 Determination and Checking of Co-ordinates of Portion Corners
17-18 Traverses round Portions 118 and 141 to obtain 1.5.G.

Co-ordinates of Corner Points
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12—Page [

Page Station
Constant

Pl
P2
P3
P4
P5

7 X

8 Y

9, 10 ¥,

INTEGRATED SURVEY

CO-ORDINATE LIST

I.S.G. Zone 55/3
Central Meridian 149° E.

E (m.)

-300 000.000

4122 145.515
+ 92253.219

-+ 98 112.145

+134 232.965
-+128 324.133
+124 717.234

142 150.078
129 875.965

N (m.)

-1 800 000.000

+ 17938.975
-+ 14404.663
-+ 28011.324

-+ 18518.725
-+ 471355770
-+ 27 380.468

< 32870.320
4+ 25472.963

Description of
Marks

Trig. Station
Trig. Station
Trig. Station

Trig. Station
Trig. Station
G.I.P. in concrete

G.L.P. in concrete
G.I.P. in concrete

Note: The example is a hypothetical one. The Eastings have been increased
in order to create the situation where all projection corrections become
large enough to be significant. This illustrates more effectively the
principles involved.

60



12—Page 2

CO-ORDINATE COMPUTATIONS
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INTEGRATED SURVEY

MISCELLANEOUS CALCULATIONS

(1) Bearings for Orientation

6 P1-P2 P1 4122 145.515
P2 - 922353219
— 29 892.296

6 P1-P3 P1  +122145.515
P34 98112.145

— 24 033.370

6 P4-P1 P4 -1-134 232.965
Pl 122145515

— 12 087.450

O P4-P5 P4 --134232.965

P5  -+128 324.133
— 5908.832

0 P5-P3 P5 -1-128324.133
P3 - 98112.145
— 30211.988

+-17 938.975
-+14 404.663
— 3534.312

-+17 938.975
428 011.324
-+-10072.349

-+-18 518.725
-+-17 938.975
—  579.750

18 518.725
-+-47 155.770
+-28 637.045

--47 155.770
428 011.324
—19 144.446

cot +0.118 234 88

f P1-P2 = 263° 15’ 25.0”

cot —0.419 098 49

0 P1-P3 = 292° 44’ 18.5”

cot +0.047 962 97

0 P4-P1 = 267° 15" 14.5”

tan —0.206 335 26

6 P4-P5 = 348° 20" 29.3”

cot 4-0.633 670 52

0 P5S-P3 = 237° 38’ 19.6”

(2) Approximate Co-ordinates Scaled from Control Diagram

E (m) N (m)
X 424 500 1 827 200
Y 442 100 1 832 900
4 429 800 1 825 100
(3) Scale Factor for Line P1-X
Approx. Co-ords of X Ey 424500 N, 1827200
from Triangulation Sketch yx -+124 500
Co-ords of Pl Ep 422145 N, 1817938
yp 122145

Scale Factor = ku(l -

YeE+nys+ 0t
61,2

= 0.99994 { 1 —&-[

124 500% 4 124 500 x 122145 - 122 1452]}

6 x 6369 7002
= (1 — 0.000 060 000) (1 -+ 0.000 187 72) = 1 -+ .000 127 72

Note: some co-ordinates are listed as full £and N values, some with constants
subtracted. See para 2.4. The constants are subtracted because it
is convenient to eliminate unnecessary digits in the general com-
putations. However in computing projection corrections full co-
ordinate values are necessary.
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12— Page 11

INTEGRATED SURVEY

SURVEY FOR FIXING THE PROPERTY CORNERS

OF

PorTiONS 118 AND 141

COUNTY OF. ...

PARISHOF........

LAND BOARD DISTRICT. .. ..... SR B 2 Division

On Integrated Survey System

Zone 55/3

Co-0ORDINATE LisT
1.S.G. Zone 55/3
Central Meridian 149° E

Page Station E (m) N (m) Description of Marks b
Constant  +-300 000.000 -+-1 800 000.000 b
.-J S
1 Pl -+122 145.515 -+ 17938.975 28
1 P2 -+ 92253.219 -+ 14 404.663 SE
] P3 + 98112.145 -+ 28011.324 >Trig. Stations S |
i P4 -+134 232.965 -+ 18 518.725 )
1 B3 +128 324.133 -+ 47155.770 8 E
1 X -+124717.234 -+ 27380.468 3
1 Y -+142 150.078 32870.320 »Galv. Iron Pipe E
J Z +129 875.965 -+ 25472963 | in Concrete T
15 B +127025.541 25453.509 \ 1/2” Iron Pins in
15 Q +125724.778 -+ 25803.926  Concrete
15 Mkl --127 126.770 -+ 25454.200 Nail
16 E -+127 148.581 -+ 25504.227 \ Galv. Iron Nail in Top of
16 F +125 759.265 -+ 25844.370 [ 0.3 m diam. fence corner
post
17 A -+126 28291 + 26933.19
17 B -+127 606.51 - 2670047
18 & -+127009.76 -~ 24783.65
18 D -+125409.16 + 25092.10
17 1 127 367.87 + 25461.98
17 2 +125561.63 -+ 25883.11
17 3 -+125905.05 - 26595.05
17 4 -+126 207.08 -+ 26537.21
17 5 126 776.09 -+ 26 838.59
17 6 +-126 780.03 -+ 26859.14
17 7 +127176.24 -+ 26783.39
18 8 -+127 162.05 -+ 25574.16
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PLAN OF PoORTIONS 118 AND 141
COUNTYOR. ..ox o PARISHOF........

LAND DISTRICT........ LAND BOARD DISTRICT........ ......DIVISION

ra

g
0 0%’

2748
15285 — Porlron J2l — E
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% g
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L L L)
o Ty %
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Dimensions in degrees and minutes and links
FIGURE 11

/

75



INTEGRATED SURVEY

12—Page 13

#1 60 LOI IT— €T 60 LOT 0 ST 60 LO1 d
SS0S STE L — TO IS STE O Z01S sT€e X
91 LT 0TT B ¥P LT 0ZC O ¥ LT 0TC O
6SE€E 0T 01— 60 ¥€ 0T .C+  LOVE YOT  Id
4LV
,90—FINSOTOSIN AVINDONY
¢ “d so[ed ziozor 9+ 90 0T 01 6= 110C 01 9—  LI10Z Ol Sd
Suipadaxd woaj 9S T Lv]l bt Sy Lyl S — LSYT LV I+  9S¥TLivl D
X 1V
91 LT OF 91— TELZOF 0 TE LT OF 4
9 vT LZE v+ IS YT LTE 91— 8067 LZE T— 60ST LZE X
pE 0 SO1 €+ €90 SOI 91— Ly 0 S01 0 Ly¥0 SoI  d
O LV
0€ 9¢ 68 I+ 6C9€ 68 0 629¢ 68 TN
_ ¥S SE L9 1 4 ¥SSE L9 0O $S S€ L9 q
PEYO S8T €+ HeRE.. T 5 0¢ 0 S8T 0 0Er0S8C O
1€ 9€ 68 g 0€ 9€ 68 ¥ =+ 629€ 68 0 6T 9€ 68 s
d LV
9 *d "so[ed JE96.69T LI+ L0E9€.69T .ST— SS9€ 69T 0 SS 9€ 69T d
Surpaoasd wouy OT9SaLPT LT+ L819S.L¥1 vd
Z1V
mcmumum wﬂ_gw mn_._wum mn_}aw nozouu_a U.Ho&U :O_uou.:ﬁ— o
ue[d .«m_._:u{. Queld mn_ucumho on.m_ﬂm -0] ﬁu?ﬁ:ﬁO
..mHmEE:EnH _.m._mEE_—o.-& .E:u.unm _Uv?ﬁ.mﬂo |uu<
paisnipy
(8) L) (9) (<) () () @ (D

122YS UONIDQU( PUD SUCHIDAIISG() JO 19D4ISqY
SINIOJ WANYO)) AUVANNOF ONINIKYALA(] MO ASYIAVI],

76



12—Page 14

CO-ORDINATE COMPUTATIONS

ISI'€S  OE1 000 SPI'ES d4—0
Y60'EET  EEI 9LOEET H—d
0LS+S £el PISpS d— DN
0eT’ 10T €€l LIT 101 NN—d
EEO'TL8T LTI S6L°0L8I1 X—Q
p61°LPEl  OF1 810°LYE] O—d
029'0S8T 9¢£1000°1 CET0S8C d—Z
SANAN sanap
saouBISI(] 10108 [9A97] BAG 01 paonpay  Uononpay
uonoalor J[eag SDURSI(] “IOH PaInseajy  2durlsic]
€ 9t 68 Sl=s Ly 9€ 68 0O Ly 9€ 68 Z
6O EGIET. 91— Scfe £ 0 SCEC €T q
#0€,9€.69C 91— S€9¢ 69C 0 €6 9¢ 69T d
z.—w.—__NMom.—N WSl— aNM..NMn_M~N QNI__.I %OM-NMUM.—N ,—Q..
IMTN LV
-mE.Eumi Fuimg 3 wcwd.d.mm I-ﬁk.m w&w_y 3uImg uon2I] pioyD) UonoIdII( 5
aueld Sunuarip ueld snlpy aueld sunuarr) AuwJ -01  poAIdsqQO
pasijeurq Jeury  AreurwirRig Lreurwnaid Wil pRAlasqO -0y
pasnlpy
(o1 (6) (8) (L) (9) (9] ¥) (€) (@ (D

(ponu11u00)—122YS UOI2IIG PUD SUOIDAIISG() JO 19DIISqY
(panuiuo2)—SINIOJ WANUOD) AUVANNOG ONINIWNALIC] VO ASHAAVE |

~
~



INTEGRATED SURVEY

12—Page 15

<
[¥oayd 10j O] ¢

€0 |
66'TLE ST+

0l .
$60°9L8 6C1 +

Z

(2duazagip Aq)

06E°6¥LT
AE9€:.68 Z— 1IN

b6L'81  + 9ZEEHLT A .
[77 ~d parwug] 10T#SH ST+ 69L°9T1 LTI+ TIW
8S€8 90001 o€z 101
690 gl 1 RS o 99L6 666'0+ S ,0E.,9€.68 [IN—d
60S €SP ST+ 19S°STO LTI+ d
Areutwijord  1€T00S ST+ 16S°8P1 LTI 1
L60 180+ 2 F60°tE |
L oS - 0SO€TI T SECPTO01 S .95 ,SE L9 g4=d
60S°€SY ST+ 1#S°ST0 LTI+ d SIe[0d
g Jour0d A1epunoq Xy o
0091 _ 6909
! I 18T°0 :
Bop00 — 8LT0 — Toumsopsiy
COSLO6 1 + IEL'8SIS — IV SOFLO61+  600°6S1S— X 6909 S
89Y°08¢ LT+ PETLILVTI+ X
¢l00 -+ <800 + 9865 t¥80H £E0"[L8I
TPSOLS | + vPSLOOT  —  OES'9LSI+  O£9'LOOI— OTHS 8ES°0- WIS YT LTE X0
9T6'€08 ST B8LL'YTLSTI+ O :
[77 *d pasaug] 6000 -+ T900 -+ 61010920+ Po1'LbE]
LIP'OSE -+ €9L°00E1 — 80V°0SE +  STRO0EI— TIBS €96'0—  .¥E . +0.S8T Od
60S'€SH ST+ 1pS°STO LTI+ d
[77 "d pardjuy] 6100 + 0€1'0 -+ O0I£8900°0— WOT9'058T
pev6l — PTyr0S8T — €LV 6l —  $SS0S8T— LI9L6 6660—  ,1€.9€.69C =7
€96'TLY ST+ S96'SLR6TIH Z
N7 110D qF 10D S09 DUBISI(] aulg
SaJeUIpI0-0)) paisnlpy NV qr s “lo1g
Surreag
AUe[d

ASHAAVE ], 40 INIWISOIAY ANV NOLLYINOIV))

78



12—Page 15
(continued)

CO-ORDINATE COMPUTATIONS

[0 13 vo ¥oayd] €0~ Ct 9¢ 68 6T 9¢ 68 V4
.00 L0 €€ €T LOEE B¢ d
4SO Tt 9 69T LE 9€ 69T d
.00 H1TEEIT (Ae1 3uoy) 1 ,2€ £1T Id
Uia Juureag aue[q paje[nae) guueag aueld 'sqO [ YW Y
€9L 81 - SHE6YLT
LTEIE68 Z— 1IN O 6¥T89000+ 100 €96°TLY ST+  $96°SL] 6T1+ V4
08°9106 : SCCSISL — SSCI86h —
LAPLTEEIT Id—PIN § 81T8T99°0+ U®Bd CL6REG LI+ SIS SPITTI+ Id

: N 00C#SP ST+  OLL'9TI LTI+ A
A Suyoayd 10j uosedwod pur UONBIUILIO JO] SUIO[

79



INTEGRATED SURVEY

12—Page 16

(77 'd pasoyug] OLCPH8 11+ S9T6SL 6+ 4 1doooe

100°0— 7
0€0°0+ £ T
S000— #81—
0000+ A00

Juawoedsiq P

1 60 LOT ST 60 LOI
§¢ 05 STtE TS 0S STE
91 LT OF ¥E LT OTT
465 ,£€.P0T .65 € PO
sguneag sguLivag
aueq aue[q
pajeno[E)  PaAlesqQ

ST 60 LOT d
0 IS stE X
PP LT 0T O
1 460 V€ H0T  1Id

Aey suonddI g1V I..:m:uu_

1598007 aued

uQ SuIMS  PIAISqO
sunuauQ

0TEl
0061
€S

00L8

46°€1,60.L01

dd 0 L69980£0— 109

JL'8S EEVOT Idd 6 SYPTILSY' 0T uel

JCPE 0S5 Xd O ETIEBLYO— UE)

[freunwnpag] OLE VP ST+  S9T6SLSTI+ o
PeY 0P - LSPPE +
976'€08 ST+ SLLYTLSTIH O
(17 "d pasoyug] 17250S Sc+ 18581 L2I+ A 1dooow
[o8ed snowmaxd] 1€z7'p0S ST+ 16S°8PI LTI+ 4
YTTPOS ST+ 9LSSPI LTI+  d  Yosyo
$200S - 908°IT +
00T ¥Sy ST+ OLL'9TI LT1+ AN

q MOTHD) O],

(Areurwraad) g jo wonisod uo yoayH

d

Id

X
e |

3unjoayo 10§ sutof

4-0

1I98°06E — 9LC99CT +
60S° €SP ST+ 1¥S'ST0 LTI+
S6ES06L — OSLEI9E —
SL6'RE6 LI+ SISSPITTIH
8609¢ST + T1€0THOT —
89V'08€ LT+ PETLILYTI+
OLEFP8 ST S9T'6SLSTI+
TT609L°0+ 2 IS1ES
EPR /P90 S 91.LT 0F
A Jau10d Alepunogq Xy o,
#69 9160+ ° QLS HS
68S 66€°0+ S

#60 wmm OM.N 1IN

80



12—Page 17

CO-ORDINATE COMPUTATIONS

[Entered p. 11]

OLEPP8 ST+ S9T6SLSTI+
LLt 6—

0S0'S6S 9T+  $S0°S06 STI -
€9+ L=

0ITLESOT+  $8O°LOT 9TI+
85+ (= -
161°6€69T+ 716782 921+
Is+ 9— .
S65°'8€8 97+  £60'9LLITI
wt = 4
SPI'6S89T+  620°08L 91+
% 5= )
88E'E8L 9T+  SETILI LTI+
ST ¥ :
89Y'00L 9T+  11§7909 LTI+
LT £

9L6'19V ST+ L98'LYE LTI+
P+ B} 0=

LTTHOS ST+ 185'8pI LTI+

SAJBUIPI0-07) pAsn(py

urs

(000ss/1)
LLOO— 60070+ JINSOPSIN  $ZEP ST

d €6THYS ST+  PLT6SLSTI+
099 186'0—
£F9061°0— 6ILP9L ST 65 061  A—¢

€ L86'P6S 9T+  T90°S06 ST+
ZLO 8810+
SSIT86'0— LIS'LOS ST OS 08T €+

b TSI'LES 9T+ 160°L0T9TI+
SS1286°0—
ZLOSBI'0— €81'EOF ST 0S 061 +v—V

VY OVI'€€69C+ 816787921+ 3
8G€ 881°0 z
001860~ 891°0§ ST IS 08T V—S 2

S €SC'8ER9T+  860°9LL9TTH =
SS1786'0— =
TLOS8I'0— €26°0C ST 0S 061 $—9 &

9 €01'65897+ +£0'08L 91+ =
98L L81°0+ Z
0IZT86'0— #8E€OF ST 6F 08T  9—L

L €SE€8L9T+ THTOLI LTI+
SIT 6810+
GE61860— 631'8€Hy ST ¥S 08T L—4

g I1bP00L97 +1S°909 LTI+
S£6 186'0—
SIT681'0+ €ST19T1 ST #S 01 a—1

[ TL6'19% ST+  L98'L9E LTI+
SIT 681°0—
$E6 186°0+ OTEETT  .ST . #S 001 R |

3 LZTYOSSTH 18681 LTI :
S91RUIPIO-00) ATRUTII[aIg S0d 3oueISIC] Suueag aury

SINIOd ¥ANYOD) JHL J0 SHLYNIA¥0-0)) "0)'S'[ NIVILE(Q) OL SIRIVANNOY AL¥Id0¥d dHL ANNOY SISYTAVI [

81



INTEGRATED SURVEY

12—Page 18

[Entered p. /7]

[Entered p. /7]

(00002/1)

_ R 800'0— 891'0— 2INSOISIA ILEER
OLE¥PS ST+  S9T'6SLSTI+ T9EPP8 ST+ L60'6SL STI+

9G£ TE1'0—
8-} 891+ - STEIR6'0+ 06£°10C ST SO 10T d—C
801°€88 ST+ LT 196 STI+ 001°€88 €T+ 6919 ST+

SE6 1860+
8-+ 81+ SIZ681'0+ 09SC08 ST #S OI —da
860°T60ST+  €91°60vSTI+ T60'760ST+  SYO'60¥ STI+

SIT681°0+
9+ 811+ CE6186'0— TEI'0L91 ST ¥S 08¢ dA—D
0S9E8L¥T+  S9L'600 LTI+ 8Y9°€8L T+  8TL600 LTI+

SE6 186°0—
T+ Lt : CIT68I'0— 9€8°€EL ST #S 061 D—4H
LTTHOS ST+ 18S°8PI LTI+ LTTYOS ST+ 186°8¥1 LT1+

(0098/1)
e : vLO'0+ LST0+ SINSO[OSTIN 00S1T

OLEPPR ST+  S9T'65SLSTI+ PP ST+ TTH6SLSTI+

S1Z 6810+
bL— LC]— CE6186'0— IH¥'8TFI ST #S 08T A48
SSTPLS ST+  0SO'TOT LTI+ 9UPLS ST+ LSO'T91 LTI+

SE6 18670+
p— ] = SIT6SI0+  1TTIL ST S .01 3—d
LTTPOS ST+ 18S°8p1 LTI+ IZTHOS ST+ 18S°8PT LTl

SalBUIPIo-00) pAsnlpy sa1BUIpIO-0)) ATRUIWI[aI] S02 dUBISI(] Suneag aury

urs

Southern Traverse

Central Traverse

(panunuoo) SINIOJ MIN™OD)

THL 40 SELYNIQU0-0)) "0)'S’'] NIVIEQ OL SINVANNOY ALYIdOU] THL ANNOY SISUAAVI ],

82



PART 3. SURVEYS ON THE INTEGRATED
SURVEY GRID



13. BASING SURVEYS ON CONTROL

13.1 Tying in by Traverse

The additional requirement, introduced by survey integration, of basing
surveys on control points, involves little extra work. This is ensured by the regula-
tions under the Survey Integration Act, which state that if a survey is beyond a
specified distance from the nearest control, the connection is not necessary. The
benefits and economies arising from working in an integrated system are such that
in many cases the surveyor will make the connection even though it is not a legal
requirement.

The majority of surveys will be tied in to the control by traverse, as this is the
most practical and flexible method of survey for the purpose.

The basic surveying operations of the property, engineering or other survey
are unchanged by integration. However some of the changes brought about in surveys
in an integration area are listed below.

1. It is necessary to base surveys on the control system.

2. Azimuth is provided automatically by the control system, thus avoiding the
need to investigate before adopting a starting azimuth.

3. The survey is related to other work. This will provide, at the very least, some
confirmatory evidence. In many cases it enables savings in the work. As more
surveys are completed in the integrated system such benefits will increase.

4. Emphasis is on linear traverses rather than loop traverses. The typical form of
the survey will be a traverse from a control point, connecting to the survey,
and closing onto another control point beyond the survey. In relation to the
size of the survey, the extra distances traversed will generally be insignificant,
because of the frequent spacing of the control points. In many instances the
control will provide a saving by enabling the traverse to close onto a control
point near the remote end of the survey, instead of requiring a return traverse
to close the loop.

5. Greater emphasis is placed on use of co-ordinates in calculation.

The linear connecting traverse between control points should ideally be
oriented by observed directions, one such direction at each end, so that four control
points are involved. This provides an independent check that the marks have been
properly identified and that they have not been disturbed. If the independent
orienting direction at one end is not available, and the control point at the other end
is sighted instead, only three points are involved. If no outside points are sighted
for orientation, but only the line between the ends of the traverse, the situation
is far from ideal. Similarly if the survey starts at a control point and loops back
to close onto the same point, from which orienting rays to two or more controls
are observed, the situation is unsatisfactory because an error, for example in the co-
ordinates of the point, could pass undetected. In the two last cases every effort should
be made to obtain an independent check, by sighting onto other control points from
intermediate traverse stations, connecting to points on other integrated surveys, or
by some other means.

Because of the basic linear shape of many of the surveys there will be a greater
tendency to fix points by radiation. As in any other survey, it is essential in the
integrated system to apply satisfactory checks to a radiated point. It should be
checked by an independent radiation from another point, by a separate “dog-leg”
minor traverse, or by other angular and distance measurements so as to provide an
independent check on both the field measurements and on the calculation of the
co-ordinates of the point,
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13.2 INTEGRATED SURVEY

13.2 Tying in by edm and combined measuremenis

Although the traverse is the most common form of connection from control
points to survey, there are circumstances where other forms are appropriate. These
occur particularly in rural areas where the distances involved in the surveys are
greater. The other forms of survey might include pure triangulation, but are more
likely to be some combination of distance and angle measurement.

The traverse, with distances measured by short or medium range edm equip-
ment, can often be complemented by angle measurements to triangulated control
points. Similarly, triangulation is often assisted by the generous addition of edm
distances.

Probably the most versatile of these forms is the combination of radiation
with the distance measured by edm, and resection. The shoricoming of the resection
(the danger circle, para 10.6) and the radiation (necessity for checking, para 13.1) are
generally avoided in the combination. By observing one or more distances from a
resection point, the determination is greatly strengthened, and the versatility of the
resection for connections to control, is retained. Viewed differently, a radiation, or a
traverse from a control point to the survey, can often be conveniently checked by
means of observed directions to a number of control points, thus avoiding the
necessity of closing onto control by traverse.

13.3  Comments on the Example

The Numerical Example of section 12 is designed to illustrate various forms
of computation. It is for this reason that there is an extensive survey shown, to bring
in control for a comparatively minor property survey. This would not occur in
practice. as the operations for connecting the control to the survey would form a
far smaller proportion of the total survey. It is likely too, that in practice greater use
would be made of edm measurements. The example emphasizes the triangulation
methods of intersection and resection because they are less familiar,

One aspect which is however well illustrated by the example is the division
into different orders of survey. The survey is based on existing trigonometrical
stations, which form the higher order. Triangulation is carried out to break down
from the trigonometrical control to the site of the survey (points X, Y and Z). This
breakdown survey forms an intermediate order survey, while the property survey,
carried out by traverse, is the lower order survey.

13.4 General Comments

Surveys in an integrated system involve connections from control to the
survey. Unless these connections and the survey are very simple, it is beneficial to
undertake a reconnaissance before commencing measurements, During this phase
of the survey the control points are located, the surveying technique is chosen in
detail, station positions are selected, and intervisibility is checked.

In the design of the survey, linear traverses are preferable to loop traverses.
The line traverse is stronger, in the sense that intermediate points on the traverse are
fixed more precisely, and provides better checks, particularly in detecting errors of
standardization or other proportional errors in the distance measurements.

As the number of surveys on the I.S.G. increases, and the experience of
surveyors in an integrated system grows, fuller advantage will be taken of the extra
possibilities of checking against other surveys on the common system, and the
Judicious use of data provided by these surveys.
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SURVEY GRID 14.2

14, THE CONTROL SYSTEM

14.1  Orders of Control

The orders or classes of accuracy for surveys are defined as Classes 4
to H in Section 15, where equation (15.2) defines the maximum allowable standard
deviation K and table VIII gives the value of the parameter F for each class of
accuracy. K depends on the distance S between the points being investigated and
generally refers to the distance from the point whose accuracy is being tested, to the
nearest control point or higher order point. The difference between one accuracy
class and the next involves a factor of either 3 or 3}. The factor has been made
sufficiently large so that it is safe to assume that the higher order points are free of
error. The precision of points is expressed in relation to the higher order survey
points in the local area.

The classes of accuracy and hence the values of F to be adopted for various
surveys are specified. Since the specifications may be altered, the description below
is in broad terms only and should not be taken as definitive. The ratio quoted is the
maximum standard deviation over the distance for fairly long distances, where the
effect of the 0.04 term under the root is negligible. It should be borne in mind that
occasional errors of twice the standard deviation are acceptable.

- CLASS A Surveys demanding an extraordinarily high precision, 13 ppm
(parts per million),

CLASS B First order geodetic surveys, -+5 ppm

CLASS C Lower order control surveys. Control for survey integration, high
precision engineering surveys, +1/67 000.

CLASS D Property surveys, engineering surveys, --1/20 000.

CLASS E Property surveys in exceptionally difficult terrain, or covering very
large areas; lower order engineering surveys, --1,/6 700.

CLASSES F, Lower order surveys. G & H are applicable to some topographic
G, H. and stadia surveys.

In quoting the results of any survey the class of accuracy should also be
quoted as this is valuable information for the user of the data. Methods for deter-
mining whether the class of accuracy required for a survey is actually achieved, are
given in part 4, sections 15 and 17.

14.2  Availability of Survey Information

The functions of collection, storage and dissemination of survey data are
essential to an integrated survey system. In New South Wales the Department of
Lands has the responsibility for these functions. The position in July, 1975, regarding
availability of information is summarised below. It is possible that there will be
changes as the system evolves to meet the increasing demands for integrated survey
information.

Information regarding the location and value of permanent marks, state
survey marks, and miscellaneous marks adopted under the Survey Co-ordination Act,
and copies of plans lodged in the Central Plan Register, is available on request from
the Officer-in-Charge, Survey Co-ordination Branch, Department of Lands, Bridge
Street, Sydney. Generally the information is presented in the following forms which
are designed for ease of copying.

(a) Control Survey Plans. These are based on the 1:250000 or 1:4000
map areas, depending on the density of marking, and show the location
of each permanent mark, state survey mark and miscellaneous mark
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(b)

©
(d)

INTEGRATED SURVEY

on the plan. An accompanying schedule is included which shows,
where available, elevations on Australian Height Datum and co-
ordinates on the Integrated Survey Grid,

Visual Index Plans. These are on a similar format to the Control
Survey Plans, except that the schedule shows details of surveys for
which a Notice of Completion and/or Notice of Intention has been
lodged (Does not include title surveys).

Recorded Plans. These comprise plans of surveys recorded in the
Central Plan Register (Does not include title surveys).

Sketch Plans. These are diagrams of individual marks, showing the rela-
tionship of the mark to nearby physical features as an aid to identifi-
cation in the field.

At present, marks placed do not necessarily have approved A.H.D. and
1.8.G. values, and some information is still recorded on an earlier system based on

parish maps.

Information on title surveys is available from the Lands Department for
Crown lands surveys and from the Lands Title office for other property surveys.

The Department of Lands includes in its records, information on heights and
in particular on the Australian Height Datum. Details are given in part 6. In the
survey of a boundary defined by mean high water, it may be necessary to consult
other authorities. See paras 22.3 and 22.6 for details.
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15. APPLICATION OF ACCURACY STANDARDS IN TRAVERSING

15.1  Summary

Before the introduction of regulations under the Integrated Surveys Act it
was customary in New South Wales to apply three tests to the measurements of a
traverse. These were—

1.

2

Measurement consistency of the individual readings, for example com-
parison of two measures of an angle.

Angular misclose, which was required to be less than
30" 4 20" A/n

where 7 was the number of angles measured. The maximum allowable
misclose was 3 minutes.

. Linear misclose, which was not to exceed a specified value depending on

the type of survey. For example—
Misclose < S/8 000
where § was the length of the traverse,

The dual functions of tests of this type are to ensure that the required precision
has been achieved and to guard against gross errors. However the use of individual
traverse miscloses is an unreliable and insensitive procedure for achieving these
aims and as a result these tests have been replaced with a set designed to investigate
the standard deviation of the calculated co-ordinates of the traverse stations. Since
the weakest point of a traverse is the mid-point, it is proposed, in order to simplify
the testing, to investigate only the mid-point.

The new tests fall into four categories—

Design. Before any measurements are taken, the proposed field technique
is investigated to see whether measurements taken will satisfy the appro-
priate standard. The standard is defined as

K =F J0.04 + S*mm

where F is a factor dependent on the class of traverse
and S is the distance from the control station to the mid-point, in
kilometres.

The field technique is evaluated to give the standard deviation o, of the
co-ordinates of the mid-point by the formula:

Iy = [qS*04® + tr0g

where ¢ is a factor from a table which depends on the number of sides and

the shape of the traverse,
S is the distance from the end point in kilometres,
gy is the standard deviation of each angle,
og is the standard deviation of each section of taping, and
r is the number of such sections,
For the field technique to be acceptable the requirement is:
og < K

It is not always necessary to examine each individual traverse: a similar
traverse may have been investigated previously.
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15.1 INTEGRATED SURVEY

2. Field consistency. Measurements in the field should be examined to
ensure that they comply with the design values of o, and o.

3. Angular misclose. The angular misclose from the measurements must not
exceed 2} times the design value o,,,
where

Oup = Gg\/ N
4. Linear misclose. The linear misclose from the measurements must not

exceed 24 times the design value o, (the standard deviation of linear
misclose) as calculated from

oy = /PS> +rod
where p is a factor from a table and the other symbols are as before.

Should any test fail, the traverse should be remeasured. To strengthen the
surveyor’s knowledge of his measuring precision a running check of all tests should
be kept for traverses carried out under similar conditions. This will indicate
whether reasonable values have been adopted for o4 and o for the given field
technique.

Although the new procedure cannot claim the same simplicity as the earlier
method, it is basically straightforward. Its advantages are that instead of testing
quantities only loosely related to precision, it tests the precision of the actual results.

15.2 Introduction

The introduction of survey integration brought a need for changes in the
standards of accuracy against which to test the results of field surveys. An integrated
set of standards is required for surveys made to the various classes of accuracy,
including standards for property surveys. The new standards are described below.
They are expressed in terms of the standard deviation of a point, rather than a mis-
close, because the misclose is not a satisfactory indicator of the accuracy of a survey.

The precision of determination of a point is usually expressed in two dimen-
sions in the form of the error ellipse. For convenience, the standard deviation of a
point is used as a single indicator of precision, derived from the error ellipse. It is
defined as the square root of the sum of the squares of the semi-axes of the ellipse.

Since the standard is expressed in terms of the standard deviation, it is necessary
to compute the standard deviation of points fixed by traverse. Rigorous least square
methods are available but the computations are considerably shorter if simplified
formulae are used. Besides the standard deviations of angle and length measurements,
the shape of the traverse has a considerable effect on the accuracy of the traverse.
In a least squares adjustment it is easy to arrange for the calculation of measures
of precision, In the Berthon Jones method, (see Bibliography) co-ordinates of the
traverse stations are used, and in the simplified method the traverse is classified
according to its shape. The two last methods, which are simple to apply, are described
in this section.

Significant differences from the previous practice in this new approach are
firstly that each surveyor determines the standard deviations of his angle and distance
measurements under various circumstances, in much the same was as he standardizes
his tape, and secondly that instead of looking at the results of a single survey in
isolation, the surveyor uses the results of a whole group of surveys carried out with
the same types of equipment in similar circumstances in order to assess the precision
of his work. He keeps a running record of these results.
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STANDARDS OF ACCURACY 15.3

15.3  Normal Distribution of errors

If any quantity, a length for example, is measured a number of times, then
the various measurements s will differ slightly. If the mean of all the measurements

is S then the deviation of each observation from the mean is v, where vy = 5 — S.
If the v’s are grouped according to size, we can count the number in each group, for
example, 3 between —2.0 and —1.5 cm, 8 between —1.5 and —1.0 cm. In general
there are more small errors than large errors, and the distribution of errors can be
shown on a graph such as figure 12 (Curve a). If the number of observations is very
large and the errors are random, then the curve will tend to take up the smooth bell
shape of Curve b in figure 12. This is the curve of normal distribution and it is the
model against which the actual error distributions present in a set of observations
can be tested,

Number of

errors — v

L

230, —2/8. . 18

o—t——+—+—

| \ L —
+10 +20 +30
Size of errors —v

FIGURE 12—DISTRIBUTION OF ERRORS AND NORMAL DISTRIBUTION

Curve (a) Actual error distribution
(b) Theoretical or normal distribution, with standard deviation o,
(c) Theoretical or normal distribution, with larger standard deviation o,

If two sets of measurements are made, one with a steel tape and the other
with a cloth tape, the spread of the distribution curve will be much narrower in the
case of the more precise steel tape observations (Curve a) than for the cloth tape
observations (Curve c), though in both cases the curve should approximate the
characteristic bell shape.

The standard deviation o is a measure of the spread of the errors—a measure
of the width of the bell. 1t is calculated from the formula

Zy?
= _— e O e B
n—1

where i is the number of observations.
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15.3 INTEGRATED SURVEY

If observations have a standard deviation of ¢ then we can expect that approxi-
mately
% of the observations will lie within the range —o to +o¢ on either side of the mean;
1% of the observations within the range —2¢ to +20; and
3928 of the observations within the range —30 to -+3o0. This property of the standard
deviation, in indicating the expected distribution of the deviations from the mean,
is important for the present purposes.

15.4 Propagation of errors

The square of the standard deviation, ¢®, is known as the variance. It is a
useful measure of precision because if two quantities are added, the variance of the
sum is found by adding the variances of the two measurements. For example, if a line
is measured in two parts @ and b which have standard deviations ¢, = 5 mm and
a, = 10 mm. then the variance of the whole line ¢ -+ b 1s

'3-2::\-?1 i aﬂa i gbz
5% 4 10% = 125 mm?*
and its standard deviation ¢, is
Oaep = /125 = +11 mm.

This means that if a line is made up of n measurements each with variance o2,
the variance of the whole line is ng® and its standard deviation is v/n o. Conversely
if a line is measured a times with the variance of each measurement % then the
variance of the mean of all » measurements is

0-2

n
and its standard deviation

Vi

15.5 Methods of specifying accuracy
The accuracy of surveys can be safeguarded by specifying,
(a) the equipment to be used and the procedures to be followed; or
(b) the maximum values of miscloses of the measurements, for example
the angular misclose of a triangle, or the linear and angular miscloses
of a traverse; or
(c) the maximum permitted standard deviation of the results.

Combinations and variations of these methods are also possible.

Method (a) is restrictive as it makes no allowance for variations in technique
or improvements in instruments. To be effective it requires very detailed documenta-
tion to specify the methods fully. It concentrates on the observations rather than
the results. It is not recommended.

Testing the misclose against a standard of 1/8 000 of the distance (or some
other specified fraction) is a form of method (b). This also has a number of serious
disadvantages. It is the precision of the points determined in the survey that is im-
portant, but the traverse misclose is an unreliable indicator of this precision. This is
referred to in more detail in para 15.9. The shape of the traverse and the number of
sides play a significant part in the relationship. These factors also weaken the power
of the test in detecting gross errors. The method of application is inconsistent with
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the actual distribution of errors. If all accidental errors caused miscloses which
were distributed equally over a range —K to + K (figure 13) then we would be justified
in accepting all traverses within that range. Only a gross error would push the mis-
close outside the range. Unfortunately, due to the statistical nature of observations,
it is not justifiable to use tests on a simple GO/NO GO basis. The actual curve of
error distribution has sides with ever decreasing slope and some arbitrary point has
to be chosen, beyond which we consider that an error is so unlikely that it must be a
mistake, The limit of -3¢ is often taken. In these circumstances it is essential to
check miscloses from a number of traverses measured under similar circumstances,
rather than individual miscloses.

Number of
errors
__NO GO-—tf= l——GO — = NOGO__
_—K— +K

. Size of errors
FIGURE [3—FICTITIOUS ERROR DISTRIBUTION

Specifying a misclose as a straight fraction of the length makes it difficult to
comply over short distances. One in 8 000 over 8 000 m allows a misclose of one
metre, which is easily attained. Over 80 m, it is not so easy to achieve 0.01 m; and
over 0.8 m the limit of 0.1 mm is virtually impossible to achieve.

Method (c), specifying the standard deviation, is free of these disadvantages.
For integrated surveys a universally applicable standard is required. P. Berthon Jones
has proposed an elegant scheme which specifies the maximum standard deviation of
points fixed. The next requirement is a method of determining the standard deviation
achieved in the actual survey, so that it can be compared with the standard. The
same author has described an accurate method. Surveyors may consider the method
rather too lengthy for general use. For this reason approximate and simplified forms,
which require only a very short calculation, have been devised. These are described
under para 15.10 “Simplified Formulae”.

15.6  Detection of gross errors

There are two aims in specifying accuracy. The first aim is to ensure that the
observations and methods applied are sufficiently precise and the second is to detect
gross errors. In a sense these two purposes are opposed, because the tolerances are
made as wide as possible for economy, but as they are made wider, the power of the
test for detecting gross errors is diminished.

If there is a gross error present which has a magnitude of three times the
standard deviation, 3, the position is as illustrated in figure 14, The actual error
distribution is shown, as is the apparent error distribution, displaced 3o to the right.
If all results within the range -3¢ are accepted then it is clear that 50 per cent of
the actual errors will be acceptable. If, however, only results within the --2¢ range
are accepted, only 16 per cent of the actual errors are acceptable. In other words
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INTEGRATED SURVEY

there is an 84 per cent chance that the gross error will be detected. This indicates
that the power of detecting gross errors is increased very significantly in this case,
by rejecting at 2o instead of 30. However the penalty is that, with the rejection at
20, one survey in 20 will have to be repeated even if there are no gross errors present,
whereas if 30 is accepted only one in 400 will need to be repeated. A balance has to
be struck between safety and economy.

Actudl error |

di stribution

Ny
N

| |

App;r 2t errar
/d—-‘ di 5iri|;ut|nn shifted
/ \ ‘ 3o due to gross orror. |
/ \ 3

Lo
i Wl
\
\

FIGURE 14—DETECTION OF GROSS ERRORS

15.7  Standards of accuracy

2 A
50% ; \\
\
\
\
‘L 6% \\\
P e B
! 20 A
fe——— e |

_The standard specified in the Survey Practice Regulations, is that the standard
deviation of any point with respect to the control, or with respect to any other point

should not exceed

K = F./0.04 - S*mm

where S is the direct distance between the two points, in km, and
F is a constant which is specified for each class of accuracy.

TasLe VIII
Standards of Accuracy
Class of o for o for
Precision F short lines long lines
A 1.5 0.3 mm 1/667 000
B 5 1.0 1,/200 000
C 15 3.0 1,/66 700
D 50 10 1,/20 000
E 150 30 1/6 670
F 500 100 1/2 000
G 1 500 300 1,/667
H 5000 1 000 1,/200
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Table VIII shows the value of F appropriate to each class of accuracy. On
very short lines, the value of S under the radical in equation (15.2) is negligible and

the permissible standard deviation is #,/0.04 = +-0.2 F mm, while on longer lines
the first term becomes negligible and the permissible standard deviation becomes
F mm per km or F parts per million. For example control surveys for integration
are of Class C precision. The permissible standard deviations are -3 mm on short
lines and --1/66 700 on long lines.

Class D precision is specified for boundary surveys, for which the appropriate
value of Fis 50. On very short lines the standard deviation is -+ 10 mm with occasional
discrepancies of up to 420 mm. For long lines the standard deviation is --1/20 000.
This may appear to be a strict standard but it should be noted that the misclose is
always larger than the standard deviation and that in one case out of three the actual
error is permitted to be larger than the standard deviation.

The variation of the standard K with distance is shown in Table IX for Classes
C and D. Other classes of precision are derived from these as shown below the table.

TaBLE IX
Maximum Permissible Emndam' Deviation K
K = F\/0.04 + S* mm (S in km)

Class of Precision
Distance
i D
m mm mm
0 3.0 10.0
100 3.4 11.2
200 4.2 14
300 5.4 18
400 6.7 22
500 8.1 27
1 000 15 51
2 000 30 100
3 000 45 150
4 000 60 200
5 000 75 250
For Class A, Kis '; of the Class C value

A,

B, Kis ' of the Class D value

E, Kis 10 times the Class C value
F, Kis 10 times the Class D value
G, K is 100 times the Class C value
H, K is 100 times the Class D value

15.8  Precision of a traverse

An important property of least squares adjustments of surveys is that they
provide information on the precision of the results. Most surveyors do not yet have
access to a computer and least square adjustment programmes, so there is a require-
ment for less elaborate techniques. Berthon Jones has given formulae for the precision
of the weakest point in the traverse, the mid-point, and the standard deviation of
the misclose, using as input the co-ordinates of the traverse points X, Y and the
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15.8 INTEGRATED SURVEY

standard deviations of the angle and distance measurements. Also required are the
co-ordinates X', Y’ of the related traverse, which coincides with the basic traverse
as far as the halfway point A, but thereafter has the direction of each side reversed.
In figure 15 for example, A—G is the traverse, D is the halfway point, and from D
onwards the direction of the sides are reversed, giving the points E’, F', and G".
The related traverse is 4 BC D E' F' G'. The precisions are calculated upon the
assumption that the misclose has been adjusted by the Bowditch Rule. It has been
shown that the results from a least squares adjustment and a Bowditch adjustment
are not significantly different. In the formulae only very approximate co-ordinates
are required for substitution. This is important as it enables the traverse to be tested
before any observations are made. 4

The formulae for a traverse of »n points, or m = (n — 1) sides are as follows:
For the misclose,

o e s i)
¥x=—>x Y =—> ¥ (153
n Z n )

=1 i=1
7 Z X2 —n¥x? Py — Z YE—ny? 2w+ (1549

i=1 i=1
J =I5 pry wwa(15.5)
=1

0,2 =J oyt + Z qx‘.:._ - oo (1 5:6)

§=
where X, ¥, are the co-ordinates of the points in the traverse. For a closed traverse,
co-ordinates of the starting point are repeated at the end.
Oy 1s the standard deviation of each of the n» measured angles (in radians).
g is the standard deviation of each of the (n — 1) measured lengths.
a,2 is the calculated standard deviation of the misclose which can be
compared with the misclose actually achieved.

For the standard deviation of the halfway point H, equations (15.3), (15.4)
and (15.5) apply, with co-ordinates X,, ¥; replaced by the co-ordinates X', Y’'; of
the related traverse. Equation (15.5) then yields J', which is used in (15.7) below.

n=1

| =

Here 0,2 is the total variance of H which is the sum of the variances in any
two directions at right angles. A comparison of ¢, should be made with K, the
standard set by equation (15.2), substituting the distance to the mid-point for S.
Note that in general the mid point has the highest standard deviation of any point
in the traverse. and so it is sufficient to test only this point.
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Example 1

Calculation of the standard deviation o,, of the misclose and total standard
deviation @, of the halfway point, of the traverse illustrated in figure 15. D is 250 m
from one end and 220 from the other and so is chosen as the halfway point. The
standard deviation o, of each angle is 10” and the standard deviation o, of each side

is =5 mm.

i\\ 100 F
< o

X |
B \60
\\.

R
e

FIGURE 15—TRAVERSE: ABCDEFG n =7
RELATED TRAVERSE: A BC D E'F'G’

NOTE: Check G D and G’ must lie on a straight line.

Pt ¥ X { X
A 0 0 0 0
B 87 50 87 50
C 87 120 87 120
D 167 120 167 120
E 167 60 167 180
F 267 60 67 180
G 267 0 67 240

1 042 410 642 890

Y 149 X586 Y 91.7 X' 127

From equation (15.4):
%= 58:200 Jrt = 21000
7' — 14 500 " = 40 800

99



¥5:9 INTEGRATED SURVEY

From (15.5):
J =72 700 m? J' = 61 800 m?
= 727 x 10'* mm? = 6.18 X 10" mm?
From (15.6): From (15.7):
T2F 3¢ 1022 1/6:18 3¢ 1012 3
Gyt =|———— 16 % 52 o =—|————+6 x 52
206 000 4\ 206 000
= 321 = T4
gy = 418 mm gy = -++8.6 mm

From equation (15.2) the limit for Class D is K = 50,/0.04 - 0.16% for § =
160 m. (Direct distance in km, from the nearest end). This gives K = --12.8 mm,
so that o, = --8.6 falls within the limits. The standard deviation of the misclose,
ay. 15 used for comparison with the actual misclose of the traverse.

15.9  Relationship between Precision and the Misclose

If the accuracy of traverses is tested by the value of the linear misclose, then
the assumption is that the misclose is a good measure of the precision. This measure
may take into account some of the factors of precision, such as the precision of
observations, but it takes no account of the shape of the traverse. In an investigation
of the relationship between the precision of the mid point (¢,,) and the magnitude of
the misclose (o), all these factors were taken into account.

The investigation showed that the shape of the traverse is a very important
factor. For a straight line traverse between control points, the misclose is a reasonably
good measure of precision, though the actual relationship varies, depending upon
the precision of observations. For a loop traverse. the misclose is an insensitive
measure of precision. Although the misclose shows practically no variation, the
precision of the half-way point varies considerably. For a V-shaped traverse between
control points, the misclose is actually misleading as a measure of precision, A
variation in the factors so as to cause a decrease in precision, also causes the misclose
to decrease. In this case the misclose gives a false measure of precision.

The investigation also indicated that it was not necessary to take into account
an infinite number of traverse shapes. Provided that there is a reasonable balance
between the linear and angular precision, and that the lengths of the traverse sides
are fairly even, all traverses can be classified into one of three classes. This is the
basis of the simplified formulae for calculating ¢,, and ¢, which are described in
para 15.10.

For traverses where the above provisos do not hold, the full equations (15.3)
to (15.7) should be applied, or, in more difficult cases, rigorous least squares tech-
niques.

15.10  Simplified Formulae

Simplified formulae for the calculation of 4, and o, are:

oy = \/P; SS'04* +rad mm ih:(15:8)

oy = /4;SS’0q? + }ra2 mm ---(15.9)
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The symbols are defined in table X where the values of the variables p and ¢
are also tabulated. They depend on the number of sides, m, in the traverse, and on
the classification of the traverse shape as Class 1, 2 or 3. Class I includes all traverses
which close back onto the starting point or onto a point close to it: that is, onto a
point less than one quarter of the total traverse length from the starting point. Class 2
traverses are basically a V or U shape. The end points are separated by more than
one quarter of the length and the traverse departs from the straight line joining the
end points by more than one quarter of the length. Class 3 traverses are straight line
traverses between control points, or traverses which depart from the straight line
by less than one quarter of the length.

The sum of the lengths of the traverse sides in km., is S. S’ is also related to
the length. In Class 1, §' is equal to S. In Class 3, S* is the direct distance between
the end points, which may be less than S because the traverse does not follow a
straight line. In Class 2 the basic form is a V shape. S’ is the direct length of a straight
V which approximates the (less direct) traverse path. For example see figure 15
where the V is shown as a broken line. The apex angle of the V varies with the actual
traverse, but it cannot be less than 30° (or the traverse is a loop traverse, Class 1)
or greater than 120° (when the traverse falls into Class 3, the line traverse).

The term ro* corresponds to the sum of the variances of the measured lengths.
For simplicity it is assumed that each measured whole tape length or part tape length
has the same standard deviation o and that there are » such measured lengths in
the traverse.

15.11  Summary of Procedure

The procedure for checking traverse accuracy is set out in detail below, and
is followed by an example of the application. This may appear somewhat lengthy,
but once the surveyor becomes familiar with the procedure, it will take only a
minimal time.

1. Preliminary: assess ¢4, o, the standard deviations of the observations.
(See section 16).

(§5]

. Examine the traverse and classify as Class 1. 2, or 3. Count the number
of sides: m.

3. Look up values of p and ¢ in table X.
Assess S and S,

W

Calculate g, (equation (15.9)).

N

Compare g, with the standard set by equation (15.2). o, indicates the
precision of the traverse at its weakest point. If @, is more than the
standard value K. the design of the traverse is unsatisfactory and it must be
upgraded by more precise observations or a change in the shape or number
of sides of the traverse.

7. Observe the traverse.

8. Check the observations for accuracy by testing the angular misclose

which should not exceed 2} \/r—: o 4. Check the value of g, from the survey,
with standard value of o,.
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CLASS | CLASS 2 CLASS 3
o :
Py q1 P e Ps qs
1 5.1 2.5 8.5 20 11.8 153
2 3.9 2.5 7.8 2.0 11.8 1.0
& 3.9 2.8 8.5 21 13 1.0
4 4.1 3.1 9.4 2.4 15 1.0
5 4.5 3.5 10.5 2.6 17 ]
6 4.8 3.9 11.6 2.9 18 1.2
7 %3 4.3 13 32 20 1.3
8 547 4.7 14 S 22 1.4
9 6.2 1 | 15 3.8 24 155
10 6.6 5.5 16 4.1 26 137
11 T 12159 17 4.4 28 1.8
12 7.6 16.3 19 4.7 30 1.9
13 8.0 6.7 20 5.0 32 2.0
14 8.5 sl 2] { 35 34 748 |
15 9.0 i) 22 5.6 36 2.3
16 9.5 8.0 23 5.9 37 2.4
17 9.9 8.4 25 6.2 39 2.5
18 10.4 8.8 26 6.5 41 2.6
19 10.9 9.2 Z 6.8 43 2l
20 11.4 9.6 28 7.1 45 2.9
25 14 11.7 34 8.6 55, | 3.5
30 16 R 41 10.1 65 4.1
35 AR 1 47 1.7 75 4.7
40 21 ' 18 53 13 84 Ji;3
45 24 ’ 20 59 15 94 5.9
50 26 22 650111 o 16 il 3
TABLE X
Simplified Computation of Precision of a Traverse
Gy = /P;SS’ 0¢* + rog® mm ...(15.8)
05 = +/q;SS’ 04® + {rod mm «-+{15:9)
g  —standard deviation of each angle in seconds.
ag —standard deviation in mm of each unit of length measurement, eg, each
tape length or part thereof.
r —No. of units of length measurement.
S —total length of traverse in km.
St —Ilength of traverse avoiding zig-zags. (See text, para 15.10).

P;q; —factors which depend on No. of sides 1 in traverse, and on Class of traverse.
i —Class No. of traverse shape.
m —No. of sides in traverse (=n — 1).
Class 1—all closed traverses and all traverses where the direct diatance between the
end points is less than S/4.
Class 2—traverses of more or less U or V shape, where the end points are separated
. by more than S/4, and the traverse wanders off the straight line by more
than S/4.
Class 3—straight line traverses and those which do not wander off the straight line
by more than 5/4.
102



10.
11.

12.

STANDARDS OF ACCURACY 15.12

Check that the approximate figures used in calculating o, were satis-
factory. If not amend a,.

Calculate o,,: (equation (15.8)).

Calculate the linear misclose M and compare with oy, If M > 210, the
traverse should be rejected. If M > 20,, it should be very carefully
investigated.

Bring M into the running comparison for all traverses of the same type:
M should be less than g, in two cases out of three, and less than 2a,,
in 19 cases out of 20.

15.12 Examples

Example II. This example is set out in detail following the numbered steps
of the “Summary of Procedure™, para 15.11. The data is the same as for example I,
para 15.8, figure 15.

|
2.

3
. Total length § = 0.47 km. S’ is length of straight V which approximates

Preliminary: 65 = 410" o¢= 45 mm.
Examination shows it is a V-shaped traverse: Class 2. (End points further
apart than S/4; deviates off line by more than S/4). Number of sides: 6.

From Table X, p, = 11.6; g, = 2.9.

traverse (shown dashed in Figure 15). §" = 0.36 km.

. Eq. (15.9)

oy = /(29 x 047 x 0.36 X 10%) + (1 X 6 x 59
= /86.6 = +9mm
(Compare with 8.6 mm, calculated by alternative method. Example T)

. Eq. (15.2) Class D. K = 50,/0.04 + 0.16°

S = 160 m, direct distance from D to nearest end point.
K = +12.8 mm,
oy < K. Traverse design is satisfactory.

7. Observe the traverse.

/1

. Calculate angular misclose of traverse. The standard deviation of this

misclose is:

BT J"G X 10" = +24"
If the misclose is > 48", angles should be carefully investigated.
If > 60", re-observe angles.

Also use double measurements of angles to verify whether they are
consistent with o5 = 10"

. Check. If necessary repeat step 5.
10.

Gy = A/(11.6 X 047 X 0.36 X 10%) + (6 X 5%)
= /346 = +19 mm
(Compare with --18 mm, calculated in Example I).
Compare actual linear misclose M with =19 mm.
If M > -+38 mm traverse should be investigated.
If M > 48 mm traverse should be rejected.
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12.. Compare with previous traverses of similar type.
Is M < o, in 2 cases out of 3?
M < 20, in 19 cases out of 20?
If not, the values adopted for o; and o; may need revision.

Example 111
This example is set out more briefly. It has the same data as Example II in
the paper by P. Berthon Jones, Australian Surveyor, Vol. 23, No. 7, Sept., 1971, p. 436,

0
100 "
00 q>
o
i 500 160
N
c;\b'
X 3
160
Y
48 110 . Y
Q\l\,}‘\ ‘;\"b

FIGURE 16—TRAVERSE PM2137 TO 5743

Data: See Figure. 16
Class 2 — V shape m =29

8 = 1.0 S’ = 0.7 km
Pz =15 ¢ = 3.8 (From Table X)
o = 1[5 X707 % 72) + (13 X 59
= 433 mm
on = /(3.8 X 07 x72) + (@ x 13 x 59
= -+16 mm

15.13  Accuracy of Traverses in Numerical Example

In the Numerical Example of section 12, four traverses are calculated. The
accuracy of these traverses is investigated in Examples 1V-VII below. For all these
examples, o4, the standard deviation of the angle measurements, is taken as -4-10".
The length measurements in Example 1V are by edm and the standard deviation of
each line is taken as -£(5 -+ 55) mm, where S is the line length in km. For the other
examples, where the lengths were measured by steel tape, the standard deviation of
each 100 m tape length or part tape length is -5 mm.
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Example IV Traverse Z—X Section 12, Page 15

g = ;{:10"

oy = +(5 + 55) mm g = +19
Opg = +12
oy = +14

Second term under root sign, equivalent to ro* becomes the sum of the squares of
the standard deviations: (192 + 122 | 142),

The traverse is a straight line traverse—Class 3.
Number of sidesm =3 p=13 g¢g=10 (Table X)
S is the actual length, S” the straight line distance between the ends.
S = 6.1 S =54 km
oy = /(13 X 6.1 X 5.4 x 10%) + (19® + 122 + 18
= 4210 mm
Actual misclose M = 280 mm
M is less than twice oy, (420 mm) so the traverse measurements pass this test.
op = /(1.0 X 6.1 X 5.4 x 10%) + I(19¢ + 12° & 14%)
= -£60 mm
Allowable limit K = F,/0.04 + §*
In this case §'is the direct distance to the halfway point of the traverse. S =2.7.
For a property survey F = 50. -
K = 50,/0.04 4 (2.7)
= 135 mm
ay, is well below K, so the traverse is well within the limit.

Example V. Northern Traverse EBAF. Section 12, Page 17 Figure 11, Page 12
0p = +10" o5 = -6 mm per 100 m tape length or part length.

Number of such lengths:r =3 +13 +5+5+14+6-+-5+4-+-8 =150
Traverse is V-shaped, Class 2. Number of sides m = 9

P = 15; g = 3.8 (Table X)
Total traverse length S = 4.3
Length of equivalent V traverse S = 3.8

Tsp = \/(15 X 4.3 x 3.8 x 10?) + (50 x 6%)
= 4160 mm

Actual misclose M = 170. Since M is far less than 20,,(= 320) and is in fact barely
larger than o, the traverse measurements pass this test.

oy = /(3.8 X 4.3 X 3.8 X 10°) + 3(50 X 6%
= 80 mm

Allowable limit K = F,/0.04 - S%. S is the direct distance to the halfway point,
S=438=19

K =50,/0.04 + (1.9)%
= 495 mm
0y 18 less than K, so the traverse is acceptable.
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Example VI  Central Traverse EF. Section 12, Page 18 Figure 10, Page /2.
gy = +107 0y = 4=6 mm r=1-115

Line traverse, Class 3. m = 2

p = 11.8:¢ = 1.0 (Table X)

3=15=8"
oy = /(118 X (1.5)% x 10%) + (16 x 6%
= +57 mm

Actual misclose M = 170. This is outside the limit 25,, but just within the
limit 36, (= 171). While the traverse measurement need not be rejected automatically,
the measurements should be carefully investigated, particularly the standardization
of the tape, since the misclose is in the direction of the length of the traverse. If no
errors of standardization or computation are located which account for the misclose.
it would be advisable to remeasure.

oy = JI0 X (1.5% x 10% + (16 x 69

= 19 mm
Allowable limit K = 50\/0.04 +5% S =107
K = 436 mm

Gy is less than the allowable limit K (by a wide margin), so that the traverse
passes this test.

Example VIII Southern Traverse ECDF. Section 12, Page /8 Figure 10, Page /2
g = 10" oy = +-6mm r=8-+4+17+9+3=37

Traverse is V-shaped: Class 2. m=4
p =94 g =24 (Table X)
S=34 5= 3.0
O = /(94 X 3.4 x 3.0 x 10%) -+ (37 % 6°)
= 105 mm

Actual misclose M = 170 which is within the 2a,,(= 210) limit. The traverse
measurement is acceptable,

oy = J24& X 34 x 30 x 109 T 137 X 6

= 4-55mm
Allowable limit K = 50 ¥f0.04 £ ¥ §— T2
K = +60mm

oy is less than K so this traverse is acceptable.

15.14 General Comments

In paragraphs 15.1 and 15.11 the various tests of precision are listed. Two
of these tests have been applied in the above Examples, IV to VIII. Comparing the
actual misclose M against the calculated standard deviation o,, is a test of the field
observations of the traverse. It should tell whether the observations match the
expected precision, which has been fed in in the form of ¢, and ¢;. The comparison
is viewed against the probability distribution: in fourteen cases out of twenty M
should be less than g,; in nineteen cases out or twenty M should be less than 2a,,.
If M is greater than 2, it is sufficiently unusual to warrant a thorough investigation,
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though the measurements need not necessarily be rejected. However if M is greater
than 2}o,, it becomes necessary to reject the measurements and repeat them.

In three of the four examples above, M lies between o), and 2a,,. This is not
typical, but four is a small sample and a more typical distribution can be expected
after a larger number, say 16 or 20 traverses, have been analysed. If not, then the
values adopted for oy and o, are suspect and should be investigated by the methods
of Section 16.

The standard deviation ¢, of the halfway point of the traverse is calculated
in order to compare with the standard deviation allowed by regulation. The com-
parison tests whether the design of the traverse is satisfactory. If a traverse fails this
test, then it is necessary to strengthen it by making the angle or distance measurements
more precise, by adding astronomical azimuths or by improving the shape of the
traverse. These measures will lead to changes in the values of parameters oy, o and
possibly p, g and m used in the calculation. A new calculation can be made to test oy.
It is obviously better if this test is made before field observations are undertaken.

16. THE STANDARD DEVIATIONS OF OBSERVATIONS

16.1 Preliminary.

It is necessary to assess the values of ¢, and o, the standard deviations of
measured angles and measured distances, to enable checks to be made on the accuracy
of survey work. Calculations of the standard deviations ¢, and o4 in paras 15.8,
15.12 and 15.13 require values of o, and o, as input.

Surveyors are constantly aware of the accuracy of their observations, so this
requirement is not a new one. Expressing the precision in terms of standard deviations
places the assessment on a sound statistical basis and enables them to be used in
other assessments.

In the following paragraphs suggestions are made for values of ¢, and oy
which may be adopted using various instruments. These are necessarily general and
are intended as starting values only. The surveyor is expected to improve and refine
them, through analysis of his own observations. Methods for determining ¢, from
field observation are also given, This analysis, and the surveyor’s experience, will
also indicate the variations in o4 and o, in varying circumstances and using different
equipment,

16.2  Standard Deviation of Angles, o,

Table XI indicates values of ¢, which can be adopted in the absence of more
specific data. It is preferable by far to use values of ¢, calculated by the methods of
para 16.4. The tabulated values are based on the assumptions that the centring and
the angle observations are carried out with care, and that two arcs (four rounds)
or four repetitions are read. Theodolites are divided into two broad categories:
1” theodolites and 10” theodolites. The second category includes all those glass-arc
theodolites in which the angles are read on a micrometer or estimated to 57, 107,
or 0.1 (or even 20”). The effect of eccentricity does not vary as much as might be
expected because the experienced surveyor automatically takes greater care in centring
when observing over short lines. The values of o, combine the effects of errors of
eccentricity of theodolite and target and error in angle measurement,
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16.2 INTEGRATED SURVEY

TaBLE XI
Standard deviation of observed angles o
Theodolite Distance gy
10” 70-300 m -+8”
i 70-300 m 46"
10" 1000 m -+-6”
1% 1000 m +4”

16.3  Effects of eccentricity.

The standard deviation should include the effects of errors from two sources:
eccentricity of theodolite and targets, and errors of angle measurements. (In those
cases where lateral refraction is significant this source should also be included).
The effect of the eccentricities is given approximately by

400 e
\Jab
where e is the standard deviation, in mm, of the centring of the theodolite and the

targets sighted, @ and b are the lengths of the two sides subtending the angle, and
g, is given in seconds.

With careful centring e varies between --1.5 mm (with optical plummet) and
-+4 mm (with plumb-bob). Because the surveyor takes more care over centring
when lines are short, the angular effect of eccentricity does not vary as rapidly as is
suggested by the formula. For example, with lines of 70 m, centring e = --1.5. When
the lengths reach 300 m, the surveyor relaxes over centring and e might reach 5 or
6 mm. Say e = -£5. In these two cases:

1. e=+15 Jab = 70 o, = +8.6”
2. e= 45 Jab = 300 0, = +6.7"

...(16.1)

G,

16.4  Determination of o4

Methods 1 and 3 determine a standard deviation o, which includes only the
effect of angular measurements. It is necessary to add the effects of centring errors a,.

0ot = 0,2 + 0,2
Method 2 includes both error sources.

Method 1. Where several angles are each observed twice, the differences d
between the measures can be used to calculate o,.
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TaBLE XII

Stn d L d?
1] +18” 324
12 +12 144
T3 —12 144
T4 —12 144
5 46 36
T6 +6 36
1l i —12 144
T8 +6 36

2d? = 1008

P 1]

Gds = = 126
n
Lo = +11.2

16.4

The standard deviation of each measured angle is ¢,/,/2 but the standard

deviation of the mean of both measures of each angle is ¢,/2.

Gy, = +5.6"
Ko, =46  0p=/5.6%46
fm— _‘—!:8“

Method 2. The angular miscloses of a number of traverses can be used to

compute G g

TasLE XIII
No. of £
Traverse | stations # | Misclose ¢ n
] 10 36 130
2 5 10 20
3 6 24 96
4 8 6 4
5 7 9 12
2
z L
il
] 2
(J'.qz = — > = 52.4
Sy
Oy = —_l_—?.z”



16.4 INTEGRATED SURVEY

Method 3. An angle may be measured repeatedly, until » measurements have
been made. For each measurement, v is the difference from the mean. Then

22

n—1

O, —
In this determination, care needs to be taken to ensure that the measurements are
taken under typical field conditions.

Methods 1 and 2 for determining ¢, require no additional observations, but
are merely an analysis of normal field observations. The surveyor can use these to
derive his values for o, and later to check whether the results of any particular
survey are up to his normal standards. For a reliable value of o, the number, n, of
observations used in the determination should be fairly large, say above 12. It is
advisable for the surveyor who is applying the methods of this Manual, to keep a
note book in which he records all his results; all his angular traverse miscloses, for
example. At intervals he should calculate a revised value of ¢y The results should
be separated into categories according to the circumstances of the survey, so that a
range of values of o, can be determined for different equipment and varying con-
ditions of surveying.

16.5 Standard deviation of distance measurement, a

Values which can be adopted for o, in the absence of more specific data, are,
for lines of under one tape length, carefully taped with a steel band,

6y = -6 mm
and for short range edm
gy = +(5 4 55) mm
where § is the length in km.
Methods for making determinations of o are given in para 16.6.
In equations (15.8) and (15.9) the term ra? is identical with the term Log*in

equations (15.6) and (15.7), being the sum of the squares of the standard deviations
of all measured lengths. In the form ro ¢ it is assumed that each tape length or part tape
length measured has the same deviation o, For example, if measuring with a 100 m
band, if the standard deviation o is -7 mm per length, the standard deviation of a
line of 190 m measured in two sections is

Jrogd = /23T = £10mm
If on the other hand it is measured in three sections of 80, 50 and 60 m, the standard
deviation

Jrod = /3 X T = +12mm

The quantity » in (15.8) and (15.9) is the number of units, tape lengths or
part tape lengths, in which the total traverse length is measured with o the standard
deviation of each unit. For edm it is sufficient to take S as the average length of the
traverse lines, and ro? becomes r(5 -+ 35)

16.6  Determination of o

Like o4, o is affected by the eccentricities at the end points of the measured
line. It is made up of a component due to errors in the length measurement and a
component due to eccentricities. For example a line may be measured with a standard
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STANDARDS OF ACCURACY 17.2

deviation ¢, = 5 mm. If the end points each have eccentricities with a standard
deviation ¢ = 4 mm then for the measurement:
o= /o2t Fe= [P+ 4
= 7.5 mm

The standard deviation o, of the measurement may be determined by repeated
measurement of the same line. Each measurement should. strictly, be made with a
different band.

Alternatively o can be determined from the adjustment of a network of
traverses, preferably a large network. It is from such a network that the figure o, —
-+6 mm for carefully taped distances has been calculated, with other evidence to
confirm the value.

17. PRECISTION OF OTHER SURVEYS

17.1  Triangulation and mixed control

Section 15 deals with standards of accuracy in relation to traverse surveys.
The assumption is made that the traverses are adjusted by the Bowditch method.
Some surveys will be based on other methods, 50 it is necessary to have methods for
determining precision when points are fixed by other techniques. Control surveys
and other precise surveys, that is, Class A, B or C surveys will always be computed
by least squares methods. Even Class D property surveys might be computed by
least squares, if they are extensive or complicated. In this case the computer output
should include the elements of the error ellipse for each point. This represents the
precision of the point relative to those points which are considered error free, the
higher order points, and this is the form required. To derive the standard deviation
of a point, take the axes of its error ellipse, square them and add, and take the square
root. It is a simple matter to test this standard deviation against the limit which is
given by K in equation (15.2).

If points are calculated by semi-graphic methods, then it is more difficult to
arrive at a reliable value for the standard deviation, though the error figure gives a
clear picture of the magnitude of the errors. If distances v are taken from the final
point chosen in the error figure, to each of the # rays in the figure, then the standard

deviation is approximately
Vi
n—1

This is not a reliable value, partly because the number a is always too small. However
it is simple, and it is a means of obtaining an estimate.

17.2  Levelling

The requirements for precision in levelling are analogous to those for position.
The regulations prescribe a maximum value of the standard deviation, depending
on the Class of Precision required, and it is necessary for testing, to determine the
standard deyiation of the actual levelling.

The value for the standard deviation of the elevation between two points is
not permitted to exceed C.

€ =E/Smm Lo (17.0)

S is the distance, in km, between the points and Table X1V gives a value for E, for
each class of precision.

11



17.2 INTEGRATED SURVEY

TasLe XIV
Classes of Precision in Levelling

Class E

0.3
1
3
10
30

O

If two points are 7 km apart, their elevation difference, measured by Class C
levelling, must have a standard deviation less than:

C=3./7=+8mm

To test whether the levelling complies with this requirement it is necessary to
determine its standard deviation. This depends on distance and is propagated as the
square root of the distance. The standard deviation over 1 km, ¢, is determined.
To find the value over any other distance S, multiply by 4/S. Thus for example if
6, is 7 mm, (for § = 1) then the standard deviation of the elevation difference over
12 km, is

o, \K'S: =712 = 424 mm

It is assumed that the instruments and procedure are unchanged over the 12 km
distance.

Two methods are given for calculating o,

1. Standard deviation from forward and back levelling

This method makes use of the normal procedure of dividing levelling lines
into sections between bench marks, with each section levelled both forward and back.
For each section the quantity d*/b is taken, where d is the difference between the
forward and back levelling results, and b is the length of the section in km. Then if

there are n such sections:
T d?
Z o
6, = b )
i 4n

This is the standard deviation of the mean of the forward and back elevation
differences.

2. Circuit Closures

If a number of closed circuits, say n, are levelled, the quantity ¢*/c is formed
for each circuit, where e is the circuit closure, and ¢ the length of the circuit.

D
0, = —:, £ ...(17.3)

For a reliable value of a;, n should be at least 12, preferably around 20. Different
values of ¢, will have to be determined for different types of levelling equipment,
different procedures or significant differences in other circumstances.
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When g, is known for a particular levelling operation, it can be tested against
the requirement. For a line of length S, the requirement is
g, \.E = @
ie. o, JS<E.S
From which it may be seen that the requirement is simplified to:
= . (17.4)

113



PART 5 DETERMINATION OF AZIMUTH FROM
SUN OR STAR OBSERVATIONS



18. DETERMINATION OF AZIMUTH

18.1 Introduction

Astronomical determinations of azimuth are applicable in certain surveys,
generally where state control survey marks have not yet been placed and surveyed
or where they are not available to the density required. Surveys where astronomical
azimuths are required are listed and discussed in para 6.5. They include isolated
surveys which are to be connected later to the Integrated Survey Grid, surveys
based on only one control point and long traverse surveys with numerous measured
angles.

| In this section various methods for determining astronomical azimuth are
discussed and the procedure for observation and computation are set out.

18.2 Conventions

There are many advantages in using a set of generalised sign conventions in
field astronomy and such a system has been adopted in this Manual. For a full
explanation of the generalized conventions, refer to the Empire Survey Review,
vol. XII, No. 90, Oct., 1953 and No. 94, Oct., 1954. As we will be only dealing with
the southern astronomical triangle for our work the appropriate triangles are shown
in fig: 17.

North

WEST 3 S EAST

South Pole

FIGURE 17—SOUTHERN ASTRONOMICAL TRIANGLES
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18.3 INTEGRATED SURVEY

18.3 Notation
The following notation is used:

3 —azimuth

b —Ilatitude, negative South

A —Ilongitude, positive East

o —declination, positive North, negative South
RA  —Right Ascension

h —altitude

r —hour angle, always positive

UT  —Universal Time = GMT (Greenwich Mean Time)
GST —Greenwich Sidereal Time
GAT —Greenwich Apparent Time
I.ST —Local Sidereal Time
LAT —Local Apparent Time
ZST —Zone Signal Time
ZT  —Zone (Mean) Time
EST —Eastern Standard Time*
— ZT for Zone 10" East of Greenwich
= GMT + 108 = UT 4+ 10* ol 1ET)
#In the summer months in N.S.W. a time zone of 11" East of Greenwich is used.

18.4 Use of the Star Almanac for Surveyors

The Star Almanac for Land Surveyors is widely available and is referred to
in the paragraphs which follow. In this 4/manac the quantities R and E are tabulated
for every sixth hour of UT. They are used for conversion from GMT to GST and

GAT respectively. They are defined as follows:—
R is the amount to be added to UT to give the Greenwich Hour Angle of the
First Point of Aries, which equals the GST
GHAy = GST =UT + R .++(18.2)
E is the amount to be added to UT to give the Greenwich Hour Angle of the
Sun. which is equal to the GAT -+ 12%
GHA ©® =GAT 4 I12*=UT + E vl 18.3)
In each case R and E are interpolated to the value of UT used and multiples
of 24" may be omitted.

18.5 Methods of Azimuth Determination.

There are basically two methods available: altitude-azimuth observations and
time-azimuth observations. The advantage of altitude-azimuth observations is that
it is not necessary to know time accurately. However, the observation is more difficult,
especially when the body observed is the sun. With the present ready availability of
radio time signals, the advantage of the altitude-azimuth method falls away, and the
time-azimuth method is recommended for general use. In an article in the Australian
Surveyor (vol. 26 No. 1, 1974) G. G. Bennett shows that the time-azimuth observations

are also significantly more accurate.
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DETERMINATION OF AZIMUTH 19.1

In the sections which follow, sections 19 and 20, examples are given of the
calculation of time-azimuth observations to a star and to the sun; and, similarly,
of the calculation of altitude-azimuth observations to a star and to the sun.

In this Manual general formulae are used for the calculations. Special formulae
can be used for the special case of circum-elongation azimuth observations to shorten
the computation. However this special method is no longer of importance. now that
computations can be performed with electronic calculators and for this reason it is
omitted from the Manual, 1t is fully covered in the standard text books on field
astronomy.

19. TIME-AZIMUTH OBSERVATIONS

19.1  Arrangement of observations.

A bright star placed exactly at the celestial pole would be the ideal mark for
azimuth observations as its rate of change of azimuth with time would be zero.
In the absence of such a star, observations are made onto stars with small rates of
change of azimuth with time. For star observations this entails choosing stars as
close as possible to the pole, that is, with high southern declinations, and observing
them when they are as far as possible from the meridian. The sun is observed for

azimuth as soon as possible after sunrise and shortly before sunset (sce figure 18).

|  BEST POSITIONS FOR |
AZIMUTH oasmwmorj

TRANSIT

e I
x\
/ ZENITH

e i

UPPER \
/ TRANSIT '\

EASTERN /77

ELONGATION /£ WESTERN

ELONGATION

N
et >

LOWER
TRANSIT

WE S5

SOUTH HORIZON

POINT
FIGURE 18—DIAGRAM OF PATHS OF CIRCUMPOLAR
STAR AND SUN THROUGH THE SKY, SHOWING BEST

POSITIONS FOR AZIMUTH OBSERVATIONS.
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19.1 INTEGRATED SURVEY

However if there is good control of time and the longitude of the station is reliable,
then results of observations near noon should also be quite reliable.

If one looks towards the South Pole then southern circumpolar stars appear
to rotate clockwise, moving westwards over the pole and eastwards under it, The
times when they change direction are called eastern and western elongation. Since
the rate of change of azimuth is zero at these instants, observations for azimuth are
favourable at or near elongation; say within 2 hours of elongation, but depending
on the declination. The times of elongation of the brighter southern stars are given
in graphical form in annexure 1. Alternatively the time of elongation can be calculated
using the formula:

cos f = cot d tan ¢ ...(19.1)

Example: Calculation of times of elongation.

Data: Star o Centauri (RA 14" 38, ¢ 60° 43’ South) to be observed from station A
(¢ 29° 02' South, A 9" 48™ East) on 9th February, 1972.

Required: EST of eastern and western elongation, calculated to nearest minute.

Hour angle: cos t = cot 0 tan ¢
b= T1° 51" or 289° 09’
= 4% 47" or 19* 13™

Time conversion

Western Eastern Notes
1 4r 47m 19%13m
RA 14 38 14 38
LST 19 25 9 51 LST = RA +t
A 9 48 9 48 ,
GST Q3T 0 03 GST = LST — 4
R 9 13 Gl 13 From Star Almanac
ur 0 24 14 50 UTr = GST — R
Time Zone 10 10
EST 10 24 0 50 EST = UT + 10%

From annexure I, for « Centauri, in latitude 29° South

LST is 19" 25™ for western elongation and
9% 50™ for eastern elongation (Compare with LST"s above)

Result: EST of western elongation 10* 24
EST of eastern elongation 0 50

The star is suitable for azimuth observations between approximately 8.30 a.m. and
12.30 p.m., and again 11 p.m. to 3 a.m.

In addition to choosing stars when their azimuth is changing slowly the
observations should be paired symmetrically east and west of the meridian. Two
stars of similar declination are chosen, and observed in symmetrical positions, one
on each side of the meridian. In the case of the sun, observations are made in the
morning and the afternoon, symmetrically spaced about the time of transit (12
hours LAT). This symmetry of observations ensures that, in the mean of azimuths
determined from east and west observations the effects of some constant errors are
eliminated. Such errors include the error in the latitude adopted for calculation but
not the error in determining the clock correction nor the error in the value of longi-

tude used in the computation.
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DETERMINATION OF AZIMUTH 19.5

19.2  Advantages of Time-Azimuth Method

This method has the following advantages over the altitude-azimuth. The
results are independent of vertical refraction and the refraction correction is not
required. The observing is easier because attention can be directed to observing only
on the vertical cross hair. The vertical circle bubble does not need to be trimmed.
The parallax correction for sun observations is not required.

The method is more accurate. However it is necessary to determine the clock
correction by comparing it with standard radio or PMG time signals, and to read
the clock at the instant of observation. A good quality wrist watch, with a sweep
second hand, is a satisfactory “clock”.

19.3  Timing Precision

The precision to which the time of an observation should be observed depends
on the rate at which azimuth is changing. Generally, times are observed to one fifth
or one tenth of a second. However, when the star observed is a pole star such as
Sigma Octantis, or when any star is observed in the vicinity of elongation, observations
to whole seconds of time are quite sufficient. The precision to which the clock correc-
tion is determined should be consistent with the precision of the star observations.

19.4  Details of VNG Time Signals

Continuous time signals are broadcast from the powerful Australian Post
Office transmitter VNG at Lyndhurst, Victoria on the following schedule:—

EST Frequency (MHz)
T 45m— 9% 30™ 12
19 45 — 7 30 4.5
845 — 8 30 7.5

This station is fairly easily picked up on the short wave band of a commercial
receiver, often even if an outside aerial is not used. There is sometimes interference
on one of the two signals available.

The pattern of the emitted signals consists of a quarter hour cycle, in which
the whole minutes are indicated by a 500 millisecond burst and the 59th second is
omitted. In the 14th minute, identification by voice is given.

In each of the three 5 minute segments, the normal second pips consist of
50 millisecond bursts with the seconds markers 55-58 shortened bursts of 5 milli-
seconds in each minute except the last one, in which the seconds markers 50-58 are
shortened bursts.

The times all refer to the starting point of each signal.

In addition, the first 15 seconds of each minute are reserved for a coding
system, which gives the correction to be applied to the Zone Signal Time to obtain
the Zone Time. The code markers are emphasized markers (for VNG double tone
markers), which start either at the first or the ninth second marker after the longer
minute marker. At most, seven such markers may be given. Each marker has a
value of one tenth of a second of time. These starting at second | are positive and
those starting at second 9 are negative. Thus if, at a station in New South Wales,
4 emphasized markers are heard with the first one at second | then £S7 = ZST + 0.4%,

19.5 Observations

The procedure for determining azimuth from star observations is as follows:
The programme begins with a comparison of the clock against radio time signals
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in order to determine the clock correction on EST. A typical set of observations to
the reference mark (RM) and the star comprises:

1. Horizontal circle reading to RM

2. Horizontal circle reading and time to star
3. Repeat 2.

4. Repeat 1.

Four such sets, two on each face, should be taken on a star, followed by four
similar sets on the other star of the pair. Finally a further determination of the clock
correction should be made,

Observing with a one-second theodolite, the result from a pair of stars observed
in the manner described, should approach a precision of 2 arcsecs. If a lesser accuracy
is required appropriate modifications can be made to the programme.

Since the star observations are generally at an altitude of 30° or higher, it is
important to level the theodolite with great care and to check the levelling between
sets.

It is an advantage to prepare a field-book with suitable columns and headings
before going into the field.

For sun observations the procedure is similar, though the paired observations
are in the morning and the afternoon, rather than to two stars. Because of the longer
time gap, the clock correction must be determined before and after the morning
observations and the afternoon observations. The readings to the sun should be made
tangential to the left limb and the right limb of the sun, alternately. The result will
not normally be as precise as star observations. (see Bennett, G. G. Australian Surveyor,
vol. 26, No. 1, 1974, in which precisions of -6 arcsecs are indicated).

19.6  Calculation of Azimuth from Time-Azimuth Observations

The general relationship, which can always be used for computing azimuth
from timed observations, is given by
—sin ¢
tan oo = ... (19.2)
cos ¢ tan 0 — sin ¢ cos ¢
for which there is no ambiguity in the quadrant in which « lies provided cognisance
is taken of the ratio of the signs of the numerator and denominator. The “TO POLAR”
feature of the most small calculators will automatically take this into account.

If the observing period is short (say, less than 10 minutes) calculations can
be made from the means of the observations. If not then observations should be
calculated separately and the resulting values meaned.
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19.7  Example—Time-Azimuth to Star

The star o Centauri (R4 14" 37™ 43.5%, 6 60° 43" 04” South) was observed
to the west of the meridian at a station A (¢ 29° 02’ 13” South 4 9" 47™ 31.5* East)
on Wednesday, 9th February, 1972. Horizontal circle readings were also taken to
Reference Mark B.

Location: Tego, Instrument: T2 Observer: R. Smith Notes
Watch Time  10%12719¢  10719702¢  10*31701¢  10"36"53¢

Watch Corr’n 1-2.0 +3.1 +35.1 +6.1

EST 1012 21.0 1019 05.1 1031 06.1 1036 59.1

Zone —IIO —10 =10 —10 £l

UT 012210 019051 031 061 036 59.1 Ed (13-1)5
R at 0" 912 47.1 912471 912 471 912,471 {From LS.
G ST 925 08.1 931 522 943 53.2 949 46.2 s
7 947 315 947 315 947 315 947 315 Eq(i8.2)
L'ST 1912 39.6 1919 23.7 1931 247 1937 17.7 LST =

R A 1437 435 1437 435 1437 435 1437 435 GST + 4
1 434 S6.1 441 402 453 412 459 342 (=LST—RA
1 arc 68°44'00”  70°25'00*  73°25'15°  74°53'30"

b —290213 —290213 —290213 —290213

B —60 4304 —604304 —604304 —604304

—sin t —0.931 902 —0.942 155 —0.958 426 —0.965 435

cos 1 0362709 0335178 0285340  0.260 645

sin ¢ — 0485373 —0.485373 —0.485373 —0.485 373

cos ¢ 0.874307 0874307 0.874307 0.874 307

tan & —1.783:275 1783275, —1.783.205:1=1:183.275

Denom. —1.383081 —1.396444 —1.420 634 —1.432 620

tan o 0.673 787  0.674 682  0.674 647  0.673895  Eq(19.2)
o 213°58°18” 214°00725" 214°0020” 213°58'33”

Obs’d angle

RM 1o Stz } 301 0143 301 0347 301 0353 301 0204

Azimuth RM 272 5635 272 5638 2725627 272 5629

The mean value of the azimuth to B is 272°56/'32”
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19.8 Example, Time-Azimuth to Sun.

The following is a determination from sun observations made on the morning
and afternoon of 10th January, 1968, at a station ADC (¢ 33° 51" 53” South,
A 107 04™ 48.6° East). The reference mark used was station P.

Location: Sydney Instrument: T2 Observer: R. Smith  Notes

EST 7"4274().0¢ 16"19702.5

Zone —10 —10

ur 21 42 40.0 619 02.5 Eq (18.1)

E 11 52 57.4 11 52 48.5 From L.S. Almanac
A 10 04 48.6 10 04 48.6

t 19 40 26.0 416 39.6 t=UT-+ E+ A
t arc 295°06'30" 64°09'54"

() —33 5153 —33 5153

) —22 0822 —22 0519

—sin ¢ 0.905 507 —0.900 053

cos { 0.424 331 0.435 780

sin ¢ —0.557 234 —0.557 234

cos ¢ 0.830 356 0.830 356

tan o —0.406 860 —0.405 826

Denom —0.101 387 —0.094 148

tan o +8.931 213 -+-9.559 957 Eq (19.2)

o 96°23'19” 264°01'42¢

Obs’d angle

Sia ko RM 269 00 20 101 2201

Azimuth RM 5 2339 52343

Observed mean azimuth of P is 5°23'41”

20. ALTITUDE-AZIMUTH OBSERVATIONS

20.1 Arrangement of observations

These observations should be made when the change in altitude is large
compared with the change in azimuth. This indicates that these observations should
also be made around the time of elongation, and well away from the time of transit.
(See figure 18). If the observations are paired symmetrically east and west of the
meridian, constant errors in the observed altitudes and the adopted latitude will be
eliminated in the mean of the azimuths derived. To achieve this with sun observations,
early morning and late afternoon observations should be made but there is no
guarantee that any systematic errors in the refraction correction will be of the same
size and sign in both morning and afternoon observations.

The observing procedure is as in time-azimuth observations, except that the
vertical circle reading to the celestial body replaces the accurate time reading. The
zone time at which the observations are made should be noted to the nearest minute
so that the sun’s declination, which is tabulated in the Star Almanac for Land Surveyors
with respect to UT, can be interpolated to sufficient acuracy. The operation of
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setting a star onto the intersection of the crosshairs is not difficult. When observing
the sun’s disc, it has to be set so that it is tangential to both the horizontal and vertical
crosshairs. A difficulty arises because the points of tangency are separated by a
considerable distance in the field of view and it is impossible to see both simultaneously.
Observations should be paired in opposite quadrants of the field of view.

If the observing period is short, calculations can be made using the means
of the altitudes and horizontal circle readings. If not, then calculations should be
made using individual observations and taking the mean of the results.

20.2 Calculation of azimuth from altitude-azimuth observations
The azimuth o can be calculated from the rigorous general relationship.
sin & — sin A sin ¢
COS &= +.+(20.1)
cos h cos ¢

The ambiguity in placing « in its correct quadrant may be resolved from
consideration of the following table:—

cos &

e L
East Obs’vn 0l 02
West Obs’vn 04 03

The observed altitudes must be corrected for refraction. This requires readings
of the air temperature and pressure at the time of observation. The correction is in
the form:

Refraction = ryf <. (20:2)

where r, and f are tabulated in the Almanac. Refraction is subtracted from observed
altitudes.
In addition altitudes observed to the sun should be corrected for parallax
which is given by
Parallax = 9" cos A o (2035

Parallax is added to observed altitudes.
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20.3  Example. Altitude-Azimuth to Star

The star « Centauri (R4 14"37m43.5%, 6 607°43'04” South) was observed to
the west of the meridian at a station A(¢ 29°02'13” South, i 9%4773].5° East) on
Wednesday, 9th February, 1972. The reference mark observed was B.

Location: Tego Instrument: T2 Observer: R. Smith Notes
EST 10212m 1019 1043]™ 10%37m
Zone —14) —10 —10 —10
ur 012 019 0 31 037 Eq (18.1)
Barometer 1 000 mb 1 000 mb 1 000 mb I 000 mb
Thermometer 30°C 30°C 30°C 30°C

0.92 0.92 0.92 0.92 From L.S,
o 82” 84" 89" 92 Alamnac
Obs'd altitude  35°21'44”  34°3227”  33°04’20”  32°21'18”
Refraction —115 —1 17 —1 22 —125 Eq (20.2)
Parallax — — — — (star)
h 35°0029"  34°31'107  33°0258"  32°19'53" s
) —290213 —290213 —290213 —290213
0 —604304 —604304 604304 604304
sin & 0.578 447  0.556 686  0.345363  0.534 815
cos / 0.815 720 0.823 934 0.838 200 0.844 969
sin 0 —0.872221 —0.872221 —0:872221 —0.872 221
sin ¢ —0.485 373 —0.485 373 —0.485373 —0.485 373
cos ¢ 0.874 307 0.874307  0.874 307  0.874 307
sin /i sin ¢ —0.280 763 —0.275054 —0.264 704 —0.259 585
sind—sinAsin ¢ —0.591 458 —0.597 167 -0.607 517 —0.612 636
cos h cos ¢ 0.713 190  0.720371  0.732844  0.738 762
cos —0.829 313 —0.828 971 —0.828 985 —0.829 273 Eq (20.1)
o (West Obs’n)  213°58'18" 214°00'25” = 214°0020” 213°58’33"

Obs'd a“gl"'} 301 0143 301 0347 301 0353 301 0204

RM 1o star

Azimuth RM

272 56 35

272 56 38

272 56 27

272 56 29

The mean value of the azimuth to B is 272°56'32”"



204 Example.

DETERMINATION OF AZIMUTH

Altitude—azimuth to the sun.

20.4

An example of the computation of azimuth from morning and afternoon
observations of the sun at similar altitudes is tabulated below. Observations were
made on the morning and afternoon of 10th January, 1968 at a station 4DC (¢
33°51'53" S, 4 10"05™ E) using the reference mark P.

Location: Sydney Instrument: T2 Observer: R. Smith Notes
EST 743 ™ 1619™

Zone —10 —10

ur 21 43 (9.1.68) 6 19 (10.1.68) Eq (18.1)
Barometer 1005 mb 1009 mb

Thermometer 20°C 24°C

i 0.96 0.95 From L.S. Almanac
To 91 89 From L.S. Almanac
Obs’d altitude 32727327 33°0206”

Refraction —1 27 —124 Eq (20.2)
Parallax == il + Eq (20.3)
h 32226/12° 33°00'49”

] —33 51 53 —33 51 53

0 —22 0822 —22 0519

sin & 0.536 367 0.544 838

cos h 0.843 985 0.838 541

sin 0 —0.376 862 —0.376 040

sin ¢ —0.557 234 —0.557 234

cos ¢ 0.830 356 0.830 356

sin / sin ¢ —0.298 882 —0.303 603

sin d—sin A sing —0.077 980 —0.072 437

cos h cos ¢ 0.700 808 0.696 287

COoS o —0.111 272 —0.104 034 Eq (20.1)
o 96°23'19” (E Obs)  264°01'42” (W Obs)

Obs’d angle

Sun to RM 269 00 20 101 2201

Azimuth RM 52339 52343

The mean value of the azimuth to P is 5°23'41”
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2l. A NEW DATUM FOR LEVELLING IN NEW SOUTH WALES

21.1 Introduction

On 5th May, 1971, the Division of National Mapping, on behalf of theNational
Mapping Council of Australia, completed the simultaneous adjustment of a network
of first and third-order levelling embracing the entire Australian continent, holding
mean sea level fixed at zero at thirty tide-gauges round the mainland coast. The
resulting datum surface has been termed the Australian Height Datum, A.H.D. 1971,
and has been adopted as the datum for all mapping activities by the National
Mapping Council. It is the purpose of the following paragraphs to describe the
establishment of the National Levelling Survey and the methods of computation
and adjustment.

Bench marks in New South Wales have for many years been referred to
Standard Datum, which is the value of mean sea level defined by the tide gauge at
Fort Denison in 1897. The reasons why it has been considered desirable to change the
long-established State Datum are set out, and the resolutions agreed to between
State and Commonwealth authorities for the future conduct of levelling within the
State of New South Wales are stated.

21.2 The New South Wales State Standard Datum

The first move to establish a common origin for levelling bench marks in
New South Wales was made in 1897. Mean Sea Level was recommended for adoption
as the Standard Datum for levelling throughout the Colony. The only tidal records
available at this time were those which were kept at Fort Denison (Sydney Harbour)
and at Newcastle. The former records were adopted. The value of mean sea level at
Fort Denison, as defined by the tide gauge there, was computed by the Government
Astronomer from a series of readings extending over 13 years. To make the Datum
for levels more readily accessible to surveyors. it was necessary to connect some
conveniently located mark on the mainland to the gauge, which was separated there-
from by 604 m of water. The brass plug let into the Bridge Street wall of the Lands
Department building was adopted for this purpose. Four separate sets of levelling
were combined, and the level of the brass plug was found to be 8.821 m above mean
sea level. This value was known as “*Standard Datum’ and remained unchallenged
until the advent of the *“Australian Height Datum™ (A.H.D.) in 1971.

21.3 Tide-gauges on the New South Wales Coast

The 1897 Conference recommended that additional tide gauges be established
along the coast, for determining mean sea level and mean high water, to provide
information for engineering purposes, shipping, and for the determination of legal
boundaries of land fronting tidal waters. Tide gauges have thus been established at
various times in the intervening period at Tweed Heads, Evans Head, Ballina, lluka
(Clarence River), Yamba, Coffs Harbour, Crowdy Head, Port Stephens, Newcastle,
Camp Cove (near the entrance to Port Jackson) Port Kembla, Jervis Bay, Bermagui,
Moruya and Eden.

The tidal gauge at Camp Cove commenced readings about 1916. Although
the Fort Denison Gauge had remained the standard for the port of Sydney, the one
at Camp Cove is regarded as more suitably located to record true ocean conditions.
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21.4 INTEGRATED SURVEY

21.4 First-order Levelling in the Sydney Metropolitan Area

A network of precise levelling was extended over the Sydney metropolitan
area by the Central Mapping Authority, Department of Lands in 1953-7. An adjust-
ment of the network was carried out to give provisional reduced levels of bench
marks in 1960. The reduced levels obtained above were based on the 1897 value of
the Lands Department plug. These levels were not published, but have been used for
all subsequent levelling operations.

21.5 Levelling in Country Areas of New South Wales

Commencing in 1954, and continuing to the present time, a network of st
order levelling has been extended over the Eastern and part of the Central Divisions
of New South Wales. In 1961, the Commonwealth Government made funds available
for 3rd order levelling surveys. The levelling was done by contract under the super-
vision and control of the Surveyor General. The Ist order levelling along the coast
and tablelands was undertaken by the Central Mapping Authority (see annexure J).
As the Ist and 3rd order levelling was gradually extended over the State, reduced
levels were made available as the sections were completed. The values were necessarily
provisional, being subject to adjustment for the closure of loops, and to further re-
adjustment when the whole network was completed. The datum for these levels was
the 1897 value for the Lands Department plug.

Reduced levels for bench marks in country areas were first published in 1964
for work completed to that date. By 1965-6, it became feasible to effect an adjustment
of the entire State network, and these results were published in 1968. These levels
were still based on the 1897 value for the Lands Department plug. Connections
were made to a number of tide gauges, but no attempt was made to reconcile differ-
ences that were revealed at these locations.

21.6 The Australian Levelling Survey

At the inception of the National Mapping Council in 1945 it had been agreed
that the Director of National Mapping would co-ordinate the activities of Common-
wealth and State authorities in the mapping of Australia, subject to the Council’s
recommendations. Within this charter, the Director planned and organized the 3rd
order levelling betewen 1961 and 1966. The Division of National Mapping undertook
the collection of levelling and tide gauge data and the necessary analysis and pro-
cessing of the data, culminating in the adjustment of a single homogenous network of
levelling covering the whole of mainland Australia.

In 1964, the Council resolved to encourage responsible authorities to install
tide gauges to obtain simultaneous observations for mean sea level on a national
basis. In 1967, a survey of twenty-six tide gauges situated on the mainland coast of
Australia was undertaken by officers of the Division of National Mapping, with the
aim of calibrating the gauges, connecting them to bench marks and discussing their
operation with the operators.

The tide gauges visited by the Survey party on the New South Wales Coast
were those at Coffs Harbour, Camp Cove (Sydney Harbour) and Eden. The latter
was eventually excluded at the request of the Surveyors-General of New South Wales
and Victoria because of the unsatisfactory readings obtained, and an additional
gauge at Port Kembla was surveyed by officers of the New South Wales Department
of Lands.

The epoch for all of the gauges (except that at Karumba in the Gulf of
Carpentaria) was Ist January, 1966, to 31st December. 1968.
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21.7 The National Levelling Adjustment

Details of the method of adjustment used for this large network of levelling
are given by Roelse, Granger and Graham (see Bibliography). The procedure is
based on the principle of an adjustment in phases, instead of in one single operation,
carrying forward the full variance-covariance matrix from one phase to the next.

After collection of data and attending to special problems at junction points
and at state borders, the first stage produced orthometrically corrected height
differences between bench marks.

The total number of junction points was too great for the adjustment to be
effected in one operation. Consequently, the network had to be divided into a series
of regions, roughly corresponding to State borders, and a preliminary adjustment
made of each. The data for the New South Wales region formed one of these pre-
liminary adjustments with an origin at Sydney.

After the preliminary adjustment every junction point in each of the five
adopted regional networks was connected to its own local origin and, accordingly,
any junction points on the boundary common to two regions were connected to
both origins. These derived height differences, which joined these common junction
points to two regional origins were now used to form condition equations.

The second phase of the adjustment reduced the separate results of the regional
adjustments into a consistent whole. The adjustment was carried out twice, first as a
free adjustment, with only one height fixed, and secondly with the height of mean
sea level at each tide gauge fixed at zero. This second adjustment established the
Australian Height Datum.

Finally the heights between junction points were adjusted in a linear manner.
Supplementary levelling, not included in the main adjustment, was adjusted into the
A H.D, similarly.

Summarizing, the Australian Height Datum (A.H.D.) is the datum surface
derived from a simultaneous adjustment of the Australian continental levelling
network, including thirty tide gauges held fixed at the values of mean sea level. The
observations for mean sea level are for the epoch 1st January, 1966 to 31st December,
1968, except at Karumba, where the epoch was Ist January, 1957, to 31st December,
1960. (See annexure J).

21.8 The Sydney Metropolitan Area

The following table shows a comparison of the heights of four bench marks
on the perimeter of the Sydney Metropolitan Levelling Network based on State
Standard Datum and the Australian Height Datum, with the corresponding values
of the Lands Department Plug and the Camp Cove tide-gauge.

Bench Mark Australian Standard Differences
Height Datum Datum (S.D.) (S.D.)y—(4.H.D.)
(A.H.D.)
metres metres metres
Heathcote (PM1938) 194.228 194.276 -0.048
Hornsby (PM225) 201.050 201.091 +0.041
Parramatta (PM222) 9.279 9.330 +0.051
Liverpool (PM646) 20.075 20.132 +0.057
Lands Dept plug 8.775 8.821 +0.046
Zero, Camp Cove
Tide-gauge —0.927 —0.887 +0.040
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~ Because of the large amount of levelling already in existence in Sydney metro-
politan area, it was at first considered essential that the long established heights
adlopted by State authorities for bench marks should be retained at their existing
values.

A committee of delegates from various government departments and instru-
mentalities, the universities, and the Institution of Surveyors, Aust., N.S.W. Division.
was convened by the Surveyor-General to consider the proposals submitted by the
Director of National Mapping to deal with this problem.

At the initial meeting the committee considered that the established and
proclaimed level of the Camp Cove tide gauge (0.887 m) should be adopted for the
National adjustment instead of the value derived in the National Tide Gauge Survey
for 1966-8 (0.927 m) in view of the large number of established points and consequent
levelling. This, in effect, meant that by the adoption of the 1897 value for mean sea
level at Fort Denison, the existing heights for bench marks in the Metropolitan area
would remain unchanged.

However, on further investigation, this would have involved the adoption
of an obviously incorrect datum and one inconsistent with the others in the adopted
epoch. In addition to this the suggested “platform™ proved to be dished and the
resulting “buffer” zone would introduce a gradient of 0.058 m between Liverpool
(fringe of the platform) and Port Kembla (the first tide gauge south of Sydney) a
distance of only 79 km. This was obviously not acceptable as a basis for a National
and State datum and the committee, without exception, agreed that the new datum
(A.H.D.) should replace the existing standard datum, The new datum was to be
introduced entirely in metres with all existing levelling being re-adjusted, converted
and introduced as soon as possible.

From the table above it will be seen that the maximum difference in the
height occurs at Liverpool, where it amounts to 0.057 metres, whereas at the Lands
Department plug it is 0.046 metres. This discrepancy of 0.011 metres is within the
specifications for Ist order levelling, so that for practical purposes, if levels on State
Standard Datum in the Metropolitan area are required at any future time, it will be
sufficient to apply a correction of --0.046 to the corresponding A.H.D. value in
metres.

As a check on the value of mean sea level at Camp Cove, for the epoch 1966-8,
which defines the Australian Height Datum in the Sydney Metropolitan area, the
mean tide level readings for the tide gauge at Camp Cove for the ideal 19-year
cycle 1951-69 were computed. The result was 0.933 metres, which agrees closely with
the value for mean sea level (0.927 metres) derived by the Horace Lamb Institute
for 1966-8.

It is of interest to compare the corresponding values at the Fort Denison
gauge for the same epoch. A new connection between the Lands Department plug
and the zero of the tide-gauge was effected in 1940 by Messrs Hart and Doyle (Mari-
time Services Board and Public Works Department, respectively) who obtained a
difference in height of 9.698 metres, and a further connection was made by the
Central Mapping Authority, Department of Lands, in 1953, when a difference of
9.700 metres was obtained.

metres
Difference in height between zero of Fort Denison gauge and plug in
north wall of Department of Lands, Bridge Street, Sydney by 1953

levelling 9,700
Height of plug of Australian Height Datum 8.775
Mean Sea Level (A.H.D.) transferred to the Fort Denison gauge  0.925
Mean Tide level on Fort Denison gauge for period 1951-69 0.936

Difference 0.011
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For the original 1897 height difference between the plug and zero on the
gauge (9.716 m) the agreement is even closer. Fort Denison is within Port Jackson
about 6 km from the open sea whereas Camp Cove is immediately adjacent to the
Heads. The two factors of possible tidal gradient within the harbour and the difficulty
of transferring the gauge level from the Island at Fort Denison to the mainland at
Bennelong Point or Mrs Macquarie’s Point, over about 600 m, throw further doubt
on the suitability of Fort Denison for a major datum point.

21.9 The adoption of the Australian Height Datum in New South Wales

In view of the variability of tidal records over the years in the Sydney region
when compared with those used to derive the previously adopted value for mean
sea level, and the desirability of introducing a reliable level datum which may be
expected to remain unchanged, the committee decided that the Australian Height
Datum should be adopted throughout the State. The adoption of the metric system
of units gave added impetus for the decision. No objection to alteration of Standard
Datum can be envisaged on legal grounds provided that the difference between the
datums may be ascertained when required.

Following discussions between representatives of the Central Mapping
Authority, Department of Lands and of the Division of National Mapping, the
following five recommendations, agreeable to both parties, were submitted as the
basis of future levelling operations in the State.

Resolutions

(1) All Bench marks in New South Wales are to be referred to the Australian
Height Datum.

(2) In the event that sections of levelling already adjusted on the A.H.D.
by the Division of National Mapping are re-run either wholly or in part
the responsibility of re-adjusting such sections lies with that Division.
The responsibility for determination of values of bench marks along new
levelling sections connected to already adjusted levelling rests with the
Surveyor General. Heights of previously determined junction points and
other fixed points shall not be disturbed without the concurrence of the
Director of National Mapping.

(3) Newly determined heights are to be notified to the Director of National
Mapping as soon as possible.

(4) Where new and additional first order levelling is run between traverses
already adjusted to the Australian Height Datum and agreement between
this first order levelling and existing values on the Australian Height
Datum is to a first order standard of accuracy, simple linear adjustment
can be effected.

(5) Should first order standards not be attained as in (4), such cases are to be
discussed and dealt with separately.

22. DETERMINATION OF MEAN HIGH WATER MARK

22.1 Lands Survey Directions on Determination of Mean High Water Mark

The New South Wales Department of Lands Survey Directions on “Deter-
mination of Mean High Water Mark™ have been reviewed and the amended A.H.D.
version is set out in the following paragraphs.
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22.2 Legal Significance

Mean high water (M.H.W.) is by Common Law, or by Statute in the case of
land below mean high water mark which is vested in the Maritime Services Board,
the boundary of all land having frontage to tidal water. It is defined as the mean of
all high tides (including both spring and neap tides) taken over a long period. Tidal
waters may be either salt or fresh, and embrace all waters in coastal streams to the
tidal limit. The tidal limit is often indicated on Department of Lands plans of survey
but its actual location at any time should be defined by observation,

22.3 Consent of Crown to Definition.

It is necessary to obtain the consent of the responsible Crown authority to
the fixation of any boundary which defines mean high water. The responsible auth-
ority for the control of all land below mean high water in Sydney Harbour, Botany
Bay and Port Hunter is the Maritime Services Board. In all other cases, except
where the land below mean high water mark is specifically vested in another authority,
(e.g., Public Works Department) or is held in fee simple, the Department of Lands
is the responsible authority. In cases where the consent of the Department of Lands
to the definition is necessary, it is the practice to not require a fresh consent where a
determination has been agreed to within the previous 10 years and where no sub-
stantial variation in position has occurred since the previous determination.

224 Methods of Determination—Preliminary

The determination of the limit of mean high water presents no difficulty when
the foreshore is steep. On flat grades and where mangrove swamps exist, great care
18 necessary.

The zero of a number of tide gauges at which Mean High Waters have been
determined over a long period have been connected to the Australian Height Datum
(A.H.D.). The location of these gauges and the relation between A.H.D. and M.H.W.
are recorded in the schedule hereunder.

Mean Mean Tide M.H.W. A.H.D. M.H.W.M
Tidal above above above R.L.
Range Gauge Gauge Gauge A.H.D.
Zero Zero Zero
Camp Cove 1.058 0.933 1.462 0.927 0.535
Fort Denison 1.067 0.936 1.469 0.925 0.544
Newcastle 1.041 0.966 1.487 1.010 0.477
Port Kembla 0.973 0.881 1.367 0.872 0.495
Coffs Harbour  1.055 0.808 1.335 0.821 0.514

Note: The tide values shown above for Camp Cove, Fort Denison, Newcastle,
Port Kembla, and Coffs Harbour are taken from records for the 19 year
period 1951 to 1969.

Information relating to other tide gauges located along the coast of
New South Wales is not at present available for publication. However as the
information comes available it will be released.

22.5 Description of Methods.
1. Levelling from Bench Mark.

In locations on the sea coast and in close proximity of the gauges shown
in the schedule in para 22.4 above, the position of mean high water can be

136



I.SD—6

3

HEIGHT DATUM 225

fixed by normal differential levelling procedures from bench marks related
to A.H.D. This method cannot be used with accuracy in positions within
estuaries and streams unless reliable information on tidal gradients is
available. Tidal gradients vary with the shape of an estuary and distances
from the open sea, and while generally there is a raising in level of the mean
tidal plane as the distance upstream increases, this does not apply to the
various elements such as mean high water, mean low water etc. As an
example, in Sydney Harbour, mean high water level at the head of the
Parramatta River is 0.08 m higher than at Fort Denison while at Homebush
Bay it is 0.01 m lower than at Fort Denison.

Levelling from a Local Tide Gauge.

There are so many influences tending to disturb the rhythmical flow of the
tide that observations extending over at least 12 months are necessary to
obtain accurate results. A much simpler process to give the approximate
required level is to take the mean of all the high waters observed at a tide
gauge located at the site over a full lunation period of 29 days. Care must be
taken to obtain the height of all the night tides as well as the day tides. This
is necessary because of the fact that in summer the day tides are higher, and
in winter the night tides are higher, the inequality becoming greater as
the moon’s declination, either north or south, increases. In spring and
autumn there is very little difference. Factors which tend to increase the
height of the tide are:—

(a) The moon with southern declination;
(b) The moon in perigee;

(c) Long continual southerly winds; and
(d) A very low barometer.

Any combination of the above or of the opposite conditions should be
avoided as far as possible. This method will give an approximation of the
height of M.H.W. to -+0.015 metres. Therefore, on a very flat foreshore,
the mean of several lunation periods should be observed. Where a local
temporary tide gauge is constructed for this purpose, it should be so
positioned that it is protected from wave action and wind conditions
which could vary the water surface level. Flood or fresh conditions should,
of course, be avoided.

The Range Ratio Method.

In a stream or estuary where an automatic tide recorder is in operation and
long-term values of the various tidal planes exist, a fairly accurate value
of mean high water may be obtained by observation on one day of the
high and low water levels at the place where the determination of high
water mark is required. The range ratio method consists of observing the
level of high and low water for consecutive tides at that place, calculating
the mean of these levels, and applying a formula to calculate the level of
mean high water at that place using tidal information ascertained at the
location of the automatic recorder.

The calculations from the observations made at that place and the informa-
tion obtained relating to the automatic recorder will give a difference in
level to be applied to observed high water level to obtain the value of
mean hig water. The formula is set out hereunder:—
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FIGURE 19—MEAN HIGH WATER MARK BY RANGE RATIO METHOD
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Approx. MHW. = MT.L., 4K, +K,
where K, = ML, =M T
L.T.R. X O.R.;
K2 =
2 x O.R,

M.T.L., = Mean of observed high water and low water at site
gauge (M.T.L. is Mean Tide Level)

M.T.L.; = Long-term value on the gauge of mean tide level at
automatic gauge. (See schedule, para 22.4).

M.T.L.; = Mean of observed high water and low water at auto-
matic gauge. (Obtainable from controlling authority).

L.T.R. = Difference between Mean high water and Mean low
water at automatic gauge. (Mean Range—See schedule
para 22.4).

O.R., = Observed range at site gauge,

O.R,4

Il

Observed range at automatic gauge. (Obtainable from
controlling authority).

These elements are diagrammatically illustrated in Figure 19 attached.
The observed range should be determined from consecutive tides during a
period of spring tides occurring at the time of new moon and full moon
not affected by abnormal weather conditions or floods. When using this
method prior arrangements should be made with the authority controlling
the gauge to obtain the required information on the day of observation,

22.6  Further information.

For technical assistance or advice on tidal gradient information and the limit
of tidal influence, enquiry should be directed in regard to Sydney Harbour, Botany
Bay and Port Hunter to the Survey Branch, Maritime Services Board, Sydney, and
in regard to other estuaries to the Survey Branch, Department of Public Works,
Sydney.
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GLOSSARY

NOTE. This glossary is intended to provide a simple explanation of technical terms
to be found in the Manual. 1t should not be regarded as definitive, as the accent is on
simplicity rather than comprehensive accuracy. More accurate definitions and fuller
explanations will be found in the main sections.

*indicates a reference to another term which appears in the Glossary.

arc-to-chord correction.
See: projection corrections

Australian Height Datum (AHD) -
A system of control points for height based on a network of levelling measure-
ments which covered the whole of Australia and which was fitted to mean sea
level as measured at tide gauges distributed around the Australian coast,
over the period 1968-1970.

Australian Map Grid (AMG)
A rectangular co-ordinate system* drawn on a Transverse Mercator Projection®
with zones 6° wide, adopted by the National Mapping Council, for mapping
throughout Australia.

Australian National Spheroid (ANS)
A spheroid with particular dimensions and shape. Major semi-axis a =
6 378 160 metres and flattening f = 1/298.25. This has been adopted for the
computation of geographic positions by the National Mapping Council, and
is the standard spheroid for Australia.

azimuth
A direction in the horizontal plane measured clockwise from the true north
meridian.

bearing
The bearing of a line is the clockwise angle from the x axis of a rectangular
co-ordinate system*, to the line.

central meridian
See: Transverse Mercator Projection

co-ordination
The organisation of surveys carried out by various authorities so that they
are co-related, in particular by being connected to a set of base surveys. Its
meaning is similar to that of integration but the provisions of the Survey
Co-ordination Act did not go as far as is currently envisaged by survey
integration.

co-ordinate system
See: rectangular co-ordinate system

geoid
The surface defined by mean sea level over the oceans and the level which
would be taken up by the sea surface if it were to extend under the continents.
In shape this surface approximates to a spheroid* but, in detail, it has undula-
tions above and below a spheroidal surface.
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geodetic survey
A survey covering a large area, so that the effect of the earth’s curvature must
be taken into account, and carried out to high precision. Often applied to the
first-order control survey of a country.

graticule
See: projection

grid
See: projection

grid convergence
See: projection corrections

ground distance
A measured distance to which a correction for slope has been applied, but
not corrections for reduction to sea level or to the projection,
(See also: projection distance)

Integrated Survey Grid (ISG)
A rectangular co-ordinate system® drawn on a Transverse Mercator Projection
with zones 2° wide, designed for integrated surveys in New South Wales.

network
The imaginary pattern formed by joining the points of a survey by lines
indicating measurements between them. Also indicating the whole of the
survey connecting the points. For example, levelling network, control network,
trigonometrical survey network.

projection
A representation, on a plane, of the surface of the earth, or, strictly, of the
spheroid*. The lines of latitude and longitude on the projection form the
graticule. In general these lines are curved. The lines representing a system of
rectangular co-ordinates on the projection form a grid, so called because they
form a square grid. Computations on this grid are very much simpler and
more convenient than on the spheroid.

projection corrections

The curved surface of the spheroid cannot be represented exactly on a plane.
To account for the differences, small corrections must be applied to measured
quantities before they can be used in computations on the projection. These
corrections are the scale correction, to be applied to distances, the are-to-chord
or (1t — T) correction to be applied to bearings* and the grid convergence to
be applied to azimuths*. For a distance measured above the spheroid or sea
level, the sea-level correction® must be applied, although it is not a projection
correction.

projection distance o
The distance between two points on the plane of the projection, which differs
from the ground distance* by the amount of the scale and sea-level corrections.

rectangular co-ordinate system
A reference system of a set of parallel lines and a second set at right angles
to the first, enabling the position of any point to be expressed uniquely by two
co-ordinates, y and x or Easting E and Northing N.

scale correction
See: projection corrections
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sea level correction
This correction reduces the distance between points situated above sea level
to the distance between the corresponding points on the sea level or spheroid
surface. It arises because the verticals from two neighbouring points converge
as they are followed downwards to the centre of the earth.

spheroid
The figure described by an ellipse when it is rotated around its minor axis. The
dimensions of a spheroid are chosen so as to approximate, as nearly as possible,
the geoid* surface. The Australian National Spheroid* has been chosen for
use in Australia.

State control survey marks
A comprehensive set of points of known horizontal position and height,
established so as to form the starting points and basis of integrated surveys.
The points are marked by monuments of standard form. The marks are placed,
surveyed and maintained under the supervision of the Surveyor-General who
is responsible for maintaining records of the marks and their positions.

survey integration
A system in which surveys of all types are interrelated by basing them on
State survey control marks*, expressing the results in the form, inter alia, of
ISG co-ordinates, and retaining records of such surveys for public use.

Transverse Mercator Projection (TM)
In the normal Mercator Projection the spheroid is projected onto a cylinder
wrapped around it so as to touch it along the equator. (See Fig 20A). In the
Transverse Mercator Projection the cylinder touches the spheroid not around

FIGURE 20—A. TRANSVERSE MERCATOR PROJECTION.
B. POSITIONS OF CYLINDERS WITH CENTRAL MERIDIANS 2° APART,
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the equator but around a meridian called the central meridian. If only a narrow
zone centred on this meridian is used. then the projection corrections can be
kept very small. In order to cover a large area, it is necessary to move the

it cylinder around to another central meridian so as to cover a new zone which
is adjacent to the first. (Fig 20B). The zone width is the width, in degrees, of
the zones into which a country is divided. The narrower the zones, the smaller
the projection corrections. For the AMG¥, the zones, which are 6° wide were
chosen for mapping purposes. For integrated surveys, 2° zones have been
chosen for the New South Wales ISG*.

trigonometrical survey .
A control survey, carried out by precise methods, normally by triangulation.
The name refers to the method of computation, using trigonometrical relation-
ships.

zone width
See: Transverse Mercator Projection.
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INTEGRATED SURVEY GRID. N.S.W.
PROJECTION FACTORS.
Accuracy, 1 part in 100 000

SEA LEVEL FACTOR.

ANNEXURE A.

Feet Factor Metres Feet Factor Metres Feet Factor Metres

0 0 2194 669 4 493 1 370
1.00000 0.99989 0.99978

104 32 2 403 733 4702 1 433
0.99999 0.99988 0.99977

313 96 2612 796 4911 1 497
0.99998 0.99987 0.99976

522 159 2 821 860 5120 1 561
0.99997 0.99986 0.99975

731 223 3030 924 5329 1 624
0.99996 0.99985 0.99974

940 287 3 239 987 5 538 1 688
0.99995 0.99984 0.99973

1 149 350 3 448 1 051 5747 I} 752
0.99994 0.99983 0.99972

1 358 414 3657 1S 5956 1 815
0.99993 0.99982 0.99971

1 567 478 3 866 1178 6 165 1 879
0.99992 0.99981 0.99970

1 776 541 4 075 1242 6 374 1 948
0.99991 0.99980 0.99969

1 985 605 4 284 1 306 6 583 2 007
0.99990 0.99979 0.99968

2194 669 4 493 1 370 6 792 2 070

Example: In metres In feet
h = 780 = 2559

d = 4 670.67 (ground distance)
r = 0.999 88 = 0.999 88 (from table)
1
1

Facto

15 323.72

s = 4 670.67 x 0.999 88
= 4 670.11 (spheroidal dist.)

5321.88
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Example:

SCALE FACTOR (k)

ANNEXURE A
(Continued)

E(km) k&  E(km)|E(km) k  E(km)
300 300 383 217
0.99994 1.00003
320 280 388 212
0.99995 1.00004
335 265 392 208
0.99996 1.00005
345 255 397 203
0.99997 1.00006
353 247 401 199
0.99998 1.00007
360 240 405 195
0.99999 1.00008
367 233 408 192
1.00000 1.00009
373 227 412 188
1.00001 1.00010
378 222 416 184
1.00002 1.00011
383 21 419 181
1.00012
423 177
In metres In feet
E = 398000m = 398.0km = 398 000 m = 398.0 km
s = 4 670.11 m — 15 321.88 ft
k = 1,00006 = 1.00006 (from table)
S = 467011 x 1.00006 = 15 321.88 x 1.00006
= 4 670.39 (Grid distance) = 15 322.80
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ANNEXURE B

INTEGRATED SURVEY GRID. N.S.W.
PROJECTION CORRECTIONS.
SEA LEVEL CORRECTION per 1 000 units

15323.72 — 1.84
15 321.88

s = 4 670.67 — 0.56
= 4 670.11 (spheroidal dist.)

Feet Corrn. Metres | Feet Corrn, Metres | Feet Corrn. Metres

0 0 2194 669 4 493 1 370
0 —0.11 —0.22

104 32 | 2403 733 4 702 1 433
—0.01 —0.12 —0.23

313 96 | 2612 796 | 40911 1 497
—0.02 —0.13 —0.24

522 159 2 821 860 5120 1 561
—0.03 —0.14 —0.25

731 223 3030 924 5329 1 624
—0.04 —0.15 —0.26

940 287 3239 987 5538 1 688
—0.05 —0.16 —0.27

1149 350 3 448 1 051 5747 1752
—0.06 —0.17 —0.28

1 358 414 3 657 17115 5956 1815
—0.07 —0.18 —0.29

1 567 478 3 866 1178 6 165 1 879
—0.08 —0.19 —0.30

1776 541 4 075 1242 6 374 1 943
—0.09 —0.200 —0.31

1 985 605 4 284 1 306 6 583 2 007
—0.10 —0.21 —0.32

2194 669 | 4493 1 370 6 792 2070

Example: In metres In feet
h =780 = 2555
d = 4 670.67 (ground dist.) = 15323.72
d.107% = 4.67 = 15.32
Correction = —0.12 x 4.67 = —0.12 % 15.32
= —0.56 = —]1.84
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SCALE CORRECTION per 1000 units

S =4670.11 + 0.28

ANNEXURE B
(Continued)

15 321.88 - 0.92

E(km) Corrn. E(km) | E(km) Corrn. E(km)

300 300 383 217
—0.06 +4-0.03

320 280 388 212
—0.05 +0.04

335 265 392 208
—0.04 +0.05

345 255 397 203
—0.03 +-0.06

353 247 401 199
0.02 +0.07

360 240 405 195
—0.01 +0.08

367 233 408 192
0.00 +0.09

373 227 412 188
+40.01 -+-0.10

378 222 416 184
+-0.02 -+0.11

383 217 419 181
+0.12

423 177
Example: In metres In feet

= 398 000 = 398.0 km = 398 000 = 398.0 km
s = 4670.11 (spheroidal dist.) =15 321.88
Corrn. = +0.06 (from table) = -+0.06
Proj. corrn. = -+(4.67 x 0.06) = +4(15.32 x 0.06)

= +0.28 = +40.92

= 4670.39
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ARC-TO-CHORD CORRECTION (¢)
Easting (km)

INTEGRATED SURVEY GRID, N.S.W.

ANNEXURE C

AN(km) | 300 | 310 | 320 | 330 | 340 | 350 | 360 370 | 380 | 390 | 400 | 410 | 420 | 430
0 07T TR ha@id 02T 0 o 0y et 8 oY 9 0"l 0"
5 0 0 0 0 1 1 1 1 1 1 1 1 2 2

10 0 0 1 1 1 1 2 2 % 2 3 3 3 3
15 0 0 1 1 2 2 2 3 3 3 e 4 5 5
20 0 1 1 2 2 3 3 Bl 4 5 5 6 6 7
25 0 1 1 2 3 3 L 4 5 6 6 7 8 8
30 0 1 2 2 3 4 5 5 6 T 8 8 9 10
35 0 1 2 3 4 4 5 6 7 8 9 10 | 11 12
40 0 1 2 3 4 3 6 7 8 9 10 11 12 13
45 0 1 2 3 5 6 7 8 9 10 11 13 14 15
50 0 1 3 -4 5 6 8 9 10 11 13 14 15 17
300 | 290 | 280 | 270 | 260 | 250 | 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170
Easting (km)
Example:
E = 398 000 m
= 398.0 km
AN = 10.0 km
The absolute value of ¢ is 3 seconds from the table.
Obtain the sign from figure 2 . pg 20.
4 = —3 seconds.
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GRID CONVERGENCE, y" = (E
' : Table of C

ANNEXURE C
(Continued)

— 300 000) x 103 x C

N(km)

0

10

30

50

80

Differences
(negative)
1234567

700
800
900

1 100
1 200
1 300
1 400
1 500

1 700
1 800

2 600
2 518
2437
2 358
2281
2 206
2133
2061
1 990
1920
1852
1785

2 592
2 509
2429
2:351
2274
2199
2125
2 053
1983
1:913
1 846
1779

2583
2 501
2 421
2343
2 266
2191
2118
2 046
1 976
1 907
1 839
1772

2 575
2 493
2413
2 335
2259
2 184
2111
2 039
1 969
1 900
1 832
1 765

2 567
2 485
2 405
2327
2.251
2177
2104
2032
1 962
1 893
1 825
1759

2 559
2477

2 169
2 096
2025
1 955
1 886
1 819
1752

2 551
2 469
2 390
2312
2 236
2 162
2089
2018
1 948
1 879
1812
1 746

2534
2 453
2374
2 297
2221
2147
2075
2 004
1934
1 866
1799
1733

ik i . ek ket b 0 T D 1D D

o ot k. ot ki o i Sk
19 1910 19 19 1 R 19 19 1R 12 1o
d L e Lad L) L) 0 L L LD W
WWWWABRALSR AL
PRERAEABBABLLILILIWL
LA LA Lh Lh Uh s L G LY O O O
LT | =
AN AR ~1-d~1~i~d | O

Example:
E

398 000 m

N = 1255000 m

E — 300 000 = - 98 000 m

C =2169 — 4 = 2 165 (from table)
The absolute value of y = (98 000 x 10~%) x 2 165 = 2 122”
Obtaining the sign from figure 3, pg 23.
v == -ls 35429
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1000 vmnits

on

Correction

Combrned

INTEGRATED SURVEY GRID, N.S.W.

ANNEXURE D

COMBINED SCALE AND SEA LEVEL CORRECTIONS

| 800

Corl version

metres- fee! |
|

T 7000
2004 4500

1800 4 6000

L 5500 |

1600
- 5000

1400 4500

1200 + 4000
|
~ 3500

1000 <
L 3000

4,- 2500
600 — 2000
1500
1004
1000

1 |
201 g9

olo |
S )

[‘ — Combined
Lol H\\""\.‘ factor
~0.30 =S & . 0.99970
|l \ \% |
e = )
T O
~0.25 - L 4 | 0.99975
e 3 e \
g ___‘-__‘"""-—-_ \\2&\ \ Bt \ I Jf |
0.20 = ~ < 0.99980
] Y93, l\ \\\
Hh‘"“'\- < 1 !
0.15 — T | \\\ 0.99985
—u. _"-—-‘._‘__‘_- | ] I T “k .
ez 1) ‘\@&\:\ \|\ | 2N
-0.10 = ‘\x\\\ NN 0,99990
— ~4_ . \ |
T \ \.
\. \ | |
-0.05 — B2 ™~ SN 10.99995 |
S
e \\ \\\l
0 $\\\\ N—11.00000
40.05 \\\ \ 1.00005
+0.10 DN 11.00010
300 310 320 330 340 350 360 370 380 390 400 410 420
290 280 270 260 250 240 230 220 210 200 190 180
Ens?mg Km.
Example: 70.67 m (ground dist.); # = 680 m; E = 398 000 m.

or

d =46
S§S=46
S=46

70.67 — 0.05 . 4.67 = 4 670.44 (grid dist.)

70.67 % 0.99995 = 4 670.44
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& Seconds of Arc

ANNEXURE D

(Continued)
12 [ S i = 219
= ARC TO CHORD A
1 CORRECTION § = //,/ 10
S
= D =
8 1— _L ,[,)"‘///&!V e /i g &
k. | <
i Wiz /// — geal 6 ®
— r"‘-'-.“—-‘ L+ w
“ e e
L]
] L1 | An+wkn ~_—J-—-""""'J o
2 ‘74;;-“'— — — 2 0o
0300 320 340 360 L 0T 400 mfJ
280 260 240 220 200 180
Easting Km.

Example: E = 398 000 m
AN = 10000 m = 10 km.
0 =3
Estimate Easting as noted in 6.2 and
obtain sign from figure 2, pg 20.
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ANNEXURE E

TRANSFORMATION OF CO-ORDINATES.
GEOGRAPHIC TO INTEGRATED SURVEY GRID

Zone: 54/2 54/3 55/1 55/2 55/3 56/1 56/2
C.M.: 141° 143° 145° 147° 149° 151° 153°

Latitude ¢ L p = 0.0001 w" +
Longitude 4 et A p? fe
Central Merid. 4, ¥ p? -}
0 = A o 20 a r " pg +
w”
a, Tabular value a, Tabular value
Increment Increment
a, for ¢ a, for ¢
a, Tabular value a, Tabular value
Increment Increment
a, for ¢ a, for ¢
a, for ¢ ) . a,p T
8, | + agp? | +
ap* | — y
a;pt| — False Origin 300 000.000
NORTHING N | EASTING E N
T, b, Tabular value 5 | -
Increment
Formulae.
b, for ¢
y=ap +agp’
b3
e = = E = 300 000 + y
bip | +
N =a, —a, p* — a, p!
byp® | +
y =byp + byp’
+7"
~ GRID CON-
VERGENCE »
Computed by:................ St CheckedIBY:: . foin e masiras e e ey
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ANNEXURE F

TRANSFORMATION OF CO-ORDINATES
INTEGRATED SURVEY GRID TO GEOGRAPHIC

Zone: 54/2 54/3 55/1 55/2 55/3 56/1 56/2
C.M.: 141° 143° 145° 147° 149° 151° 153°

EASTING E: _ | NORTHING N:
False Origin 300 000.000 q = 0.000001 y -+
Yz q* i
¢, Tabular value q® f
Increment q? 4
<
¢y Tabular value i Interp N in a, ¢’ T D ooh g
¢y Increment ¢, Tabular value
e ,
Cq Increment
DUl GolufleoBEap! G s
cq® [ — ct
Byt : B P | ¢’: L _‘.’—
BRI e csg? | — &
Central Merid. 2, % ceqt | + %
LONGITUDE 4| ° ' < | LATITUDE4 | = ° ' 1
d, Tabular vah; : - e
Increme‘rjl: S S o] Formulae
dy ¢ =¢"—eq*+¢c.q°
h dq | + : ®=6q—¢Cq +E;
dyq’® | — y 1on y. =d;q9.—d;q*
i s 'y”— r | A=Ay + o
GRIH= 2R3
CONVERG. y - S
85 Ty 11405 ) ) icE i e B PO s R ecked Y e L ) Lol
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ANNEXURE H

INTEGRATED SURVEY GRID N.S.W.
ZONE TO ZONE TRANSFORMATION

Zone 54/2 54/3 55/1 55/2 55/3 56/1 56/2
CM. 141° 143° 145° 147° 149° 151° 153°
SEHOR: =00 Sadt sk el oot Y5 (o R e [, 1O BOBE 0 S i i Ssiuge
E N
E, N,
AE AN
(¥) ®)
ky(y) k(x)
—ka(X) ka(y)
kg ky —
K; K,
Ks(y) Ks(x)
—K(x) Ky()
ks - kg
K; Ks
Ky(y) K;5(x)
—Ky(x) Kg(y)
AE AN
E' N’y
E’ N’
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ANNEXURE I

LOCAL SIDERAL TIME AT ELONGATION
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